Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Paired-spike interactions and synaptic efficacy of retinal inputs to the thalamus

Abstract

In many neural systems studied in vitro, the timing of afferent impulses affects the strength of postsynaptic potentials1,2. The influence of afferent timing on postsynaptic firing in vivo has received less attention. Here we study the importance of afferent spike timing in vivo by recording simultaneously from ganglion cells in the retina and their targets in the lateral geniculate nucleus of the thalamus. When two spikes from a single ganglion-cell axon arrive within 30 milliseconds of each other, the second spike is much more likely than the first to produce a geniculate spike, an effect we call paired-spike enhancement. Furthermore, simultaneous recordings from a ganglion cell and two thalamic targets indicate that paired-spike enhancement increases the frequency of synchronous thalamic activity. We propose that information encoded in the high firing rate of an individual retinal ganglion cell becomes distributed among several geniculate neurons that fire synchronously. Because synchronous geniculate action potentials are highly effective in driving cortical neurons3, it is likely that information encoded by this strategy is transmitted to the next level of processing.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Recording of connected neurons in retina and LGN.
Figure 2: Time course and magnitude of paired-spike enhancement.
Figure 3: Scatter plot of efficacies of second versus first retinal spikes; all retinogeniculate connections showed paired-spike enhancement.
Figure 4: Divergent input from a single retinal ganglion cell synchronizes two geniculate neurons; paired-spike enhancement increases the frequency of this synchronization.

Similar content being viewed by others

References

  1. Magleby, K. L. in Synaptic Function (eds Edelman, G. M., Gall, W. E. & Cowan, W. M.) 21–56 (Wiley, New York, (1987)).

    Google Scholar 

  2. Zucker, R. S. Short-term synaptic plasticity. Annu. Rev. Neurosci. 12, 13–31 (1989).

    Article  CAS  PubMed  Google Scholar 

  3. Alonso, J.-M., Usrey, W. M. & Reid, R. C. Precisely correlated firing in cells of the lateral geniculate nucleus. Nature 383, 815–819 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Cleland, B. G., Dubin, M. W. & Levick, W. R. Sustained and transient neurones in the cat's retina and lateral geniculate nucleus. J. Physiol. 217, 473–496 (1971).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cleland, B. G., Dubin, M. W. & Levick, W. R. Simultaneous recording of input and output of lateral geniculate neurones. Nature New Biol. 231, 191–192 (1971).

    Article  CAS  PubMed  Google Scholar 

  6. Hubel, D. H. & Wiesel, T. N. Integrative action in the cat's lateral geniculate body. J. Physiol. 155, 385–398 (1961).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kaplan, E., Purpura, K. & Shapley, R. M. Contrast affects the transmission of visual information thrugh the mammalian lateral geniculate nucleus. J. Physiol. 391, 267–288 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Reid, R. C., Victor, J. D. & Shapley, R. M. The use of m-sequences in the analysis of visual neurons: linear receptive field properties. Vis. Neurosci. 14, 1015–1027 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Sutter, E. E. in Advanced Methods of Physiological Systems Modeling Vol. 1 (ed. Marmarelis, V.) 303–315 (Univ. Southern California, Los Angeles, (1987)).

    Google Scholar 

  10. Sutter, E. E. in Nonlinear Vision: Determination of Neural Receptive Fields, Function and Networks (eds Pinter, R. & Nabet, B.) 171–220 (CRC, Cleveland, (1992)).

    Google Scholar 

  11. Reid, R. C. & Alonso, J.-M. Specificity of monosynaptic connections from thalamus to visual cortex. Nature 378, 281–284 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Katz, B. & Miledi, R. The role of calcium in neuromuscular facilitation. J. Physiol. 195, 481–492 (1968).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Atluri, P. P. & Regehr, W. G. Determinants of the time course of facilitation at the granule cell to Purkinje cell synapse. J. Neurosci. 16, 5661–5671 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bloomfield, S. A., Hmaos, J. E. & Sherman, S. M. Passive cable properties and morphological correlates of neurones in the lateral geniculate nucleus of the cat. J. Physiol. 383, 653–692 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hamos, J. E., Van Horn, S. C., Raczkowski, D. & Sherman, S. M. Synaptic circuits involving an individual retinogeniculate axon in the cat. J. Comp. Neurol. 259, 165–192 (1987).

    Article  CAS  PubMed  Google Scholar 

  16. Varela, J. A. et al. Aquantitative description of short-term plasticity at excitatory synapses in layer 2/3 of rat primary visual cortex. J. Neurosci. 17, 7926–7940 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tsodyks, M. V. & Markram, H. The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. Proc. Natl Acad. Sci. USA 94, 719–723 (1997).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Markram, H. & Tsodyks, M. Redistribution of synaptic efficacy between neocortical pyramidal neurons. Nature 382, 807–810 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Abbott, L. F., Varela, J. A., Sen, K. & Nelson, S. B. Synaptic depression and cortical gain control. Science 275, 220–224 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Peters, A. & Payne, B. R. Numerical relationships between geniculocortical afferents and pyramidal cell modules in cat primary visual cortex. Cereb. Cortex 3, 69–78 (1993).

    Article  CAS  PubMed  Google Scholar 

  21. Cleland, B. G. in Visual Neuroscience (eds Pettigrew, J. D., Snaderson, K. S. & Levick, W. R.) 111–120 (Cambridge Univ. Press, London, (1986)).

    Google Scholar 

  22. Meister, M., Wong, R. O., Baylor, D. A. & Shatz, C. J. Synchronous bursts of action potentials in ganglion cells of the developing mammalian retina. Science 252, 939–943 (1991).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Miller, K. D. Amodel for the development of simple cell receptive fields and the ordered arrangement of orientation columns through activity-dependent competition between ON- and OFF-center inputs. J. Neurosci. 14, 409–441 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Weliky, M. & Katz, L. C. Disruption of orientation tuning in visual cortex by artificially correlated neuronal activity. Nature 386, 680–658 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Dan, Y., Alonso, J.-M., Usrey, W. M. & Reid, R. C. Coding of visual information by precisely correlated spikes in the lateral geniculate nucleus. Nature Neurosci. (in the press).

  26. Meister, M., Lagnado, L. & Baylor, D. A. Concerted signaling by retinal ganglion cells. Science 270, 1207–1210 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Smirnakis, S. M., Warland, D. K., Berry, M. J. & Meister, M. Spike bursts in visual responses of retinal ganglion cells. Soc. Neurosci. Abstr. 22, 494 (1996).

    Google Scholar 

  28. König, P., Engel, A. K. & Singer, W. Integrator or coincidence detector? The role of the cortical neuron revisited. Trends Neurosci. 19, 130–137 (1996).

    Article  PubMed  Google Scholar 

  29. Usrey, W. M. & Reid, R. C. Synchronous activity in the visual system. Annu. Rev. Physiol. (in the press).

  30. Perkel, D. H., Gerstein, G. L. & Moore, G. P. Neuronal spike trains and stochastic point processes. II. Simultaneous spike trains. Biophys. J. 7, 419–440 (1967).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the NIH, The Klingenstein Fund, The Harvard Mahoney Neuroscience Institute, and The Howard Hughes Medical Institute. We thank E. Serra for technical assistance and J.-M. Alonso, J. Assad, M. Livingstone, M. Meister, W. Regehr and D. Hubel for comments on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Clay Reid.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Usrey, W., Reppas, J. & Reid, R. Paired-spike interactions and synaptic efficacy of retinal inputs to the thalamus. Nature 395, 384–387 (1998). https://doi.org/10.1038/26487

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/26487

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing