Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

General anaesthetics can selectively perturb lipid bilayer membranes

Abstract

THE circumstantial evidence that anaesthetics act primarily by increasing the fluidity of membranes is quite strong. The gaseous, volatile, barbiturate, steroid and alcohol anaesthetics have all been shown to fluidise phosphatidylcholine–cholesterol lipid bilayers and the demonstration has also been made for some biological membranes1–4. Furthermore, a number of lipophilic substances, such as the higher alkanols, do not fluidise membranes and are not anaesthetics3. In some cases, a correlation between nerve-blocking potency and the action of anaesthetics in perturbing lipid bilayers has been observed5. Moreover, pressure counteracts the fluidising effects of anaesthetics just as it antagonises general anaesthesia in vivo6–9. The overall success of the fluidised lipid hypothesis tends to be its major drawback, for if anaesthetics fluidise membranes indiscriminantly then the hypothesis fails to provide a unique mechanism for their selective depression of neuronal function. We show here that lipid composition may modulate the ability of an anaesthetic to fluidise membranes more than has been generally supposed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Metcalfe, J. C., Seeman, P., and Burgen, A. S. V., Molec. Pharmac., 4, 87–95 (1968).

    CAS  Google Scholar 

  2. Trudell, J. R., Hubbell, W. L., and Cohen, E. N., Biochim. biophys. Acta, 291, 321–327 (1973).

    Article  CAS  Google Scholar 

  3. Lawrence, D. K., and Gill, E. W., Molec. Pharmac., 11, 280–286 (1975).

    CAS  Google Scholar 

  4. Boggs, J. M., Yoong, T., and Hsia, J. C., Molec. Pharmac., 12, 127–135 (1976).

    CAS  Google Scholar 

  5. Johnson, S. M., Miller, K. W., and Bangham, A. D., Biochim. biophys. Acta, 307, 42–57 (1973).

    Article  CAS  Google Scholar 

  6. Trudell, J. R., Hubbell, W. L., and Cohen, E. N., Biochim. biophys. Acta, 291, 328–334 (1973).

    Article  CAS  Google Scholar 

  7. Johnson, S. M., and Miller, K. W., Nature. 228, 75–76 (1970).

    Article  ADS  CAS  Google Scholar 

  8. Miller, K. W., Paton, W. D. M., Smith, R. A., and Smith, E. B., Molec. Pharmac., 9, 131–143 (1973).

    CAS  Google Scholar 

  9. Halsey, M. J., and Wardley-Smith, B., Nature, 257, 811–813 (1975).

    Article  ADS  CAS  Google Scholar 

  10. Hubbell, W. L., and McConnell, H. M., J. Am. chem. Soc., 93, 314–326 (1971).

    Article  CAS  Google Scholar 

  11. Rosenberg, P. H., Eibl, H., and Stier, A., Molec. Pharmac., 11, 879–882 (1975).

    CAS  Google Scholar 

  12. Neal, M. J., Butler, K. W., Polnaszek, C. F., and Smith, I. C. P., Molec. Pharmac., 12, 144–155 (1976).

    CAS  Google Scholar 

  13. McConnell, H. M., and McFarland, B. G., Ann. N. Y. Acad. Sci., 195, 207–217 (1972).

    Article  ADS  CAS  Google Scholar 

  14. Seelig, A., and Seelig, J., Biochim. biophys. Acta, 406, 1–5 (1975).

    Article  CAS  Google Scholar 

  15. Hale, J., Keegan, R., Smith, E. B., and Snape, T. J., Biochim. biophys. Acta, 288, 107–113 (1972).

    Article  CAS  Google Scholar 

  16. Levitt, J. D., Anesthesiology, 42, 267–274 (1975).

    Article  CAS  Google Scholar 

  17. Lever, M. J., Miller, K. W., Paton, W. D. M., and Smith, E. B., Nature, 231, 368–371 (1971).

    Article  ADS  CAS  Google Scholar 

  18. Johnson, F. H., and Flagler, E. A., Science, 112, 91–92 (1950).

    Article  ADS  CAS  Google Scholar 

  19. Paterson, S. J., Butler, K. W., Huang, P., Labelle, J., and Smith, I. C. P., Biochim. biophys. Acta, 266, 597–602 (1972).

    Article  CAS  Google Scholar 

  20. Miller, K. W., Paton, W. D. M., Smith, R. A., and Smith, E. B., Anesthesiology 36, 339–351 (1972).

    Article  CAS  Google Scholar 

  21. Whittaker, V. P., in Handbook of Neurochemistry, 2 (edit. by Lajtha, A.), 327–364 (Plenum, New York, 1969).

    Book  Google Scholar 

  22. Gordesky, S. E., and Mannetti, G. V., Biochem. biophys. Res. Commun., 50, 1027–1031 (1973).

    Article  CAS  Google Scholar 

  23. Tanaka, K-I., and Ohnishi, S-I., Biochim. biophys. Acta, 426, 218–231 (1976).

    Article  CAS  Google Scholar 

  24. Metcalfe, J. C., Hoult, J. R. S., and Colley, C. M., in Molecular Mechanisms of General Anaesthesia (edit. by Halsey, M. J., Miller, R. A., Sutton, J. A.), 145–163 (Churchill Livingstone, Edinburgh, 1974).

    Google Scholar 

  25. Miller, K. W., Science, 185, 867–869 (1974).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

MILLER, K., PANG, KY. General anaesthetics can selectively perturb lipid bilayer membranes. Nature 263, 253–255 (1976). https://doi.org/10.1038/263253a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/263253a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing