Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Induction of ovalbumin and conalbumin synthesis in immature chick oviducts by ethionine

Abstract

PROLONGED feeding of rats with ethionine results in a high frequency of hepatic carcinoma. Ethionine induces other pathological manifestations in other organs and tissues of experimental animals1, and some of its effects can be reversed rapidly by the administration of methionine. At the molecular level ethionine induces a rapid decrease in hepatic ATP concentration2–4, followed by inhibition of RNA5 and protein synthesis6. The decrease in ATP concentration is due to formation of S-adenosyl-ethionine7, an inhibitor of tRNA methyltransferases8,9, and so tRNA isolated from the liver of rats injected with adenine and ethionine is hypomethylated10,11. It is well established that several eukaryotic mRNAs are methylated on the 5′ terminus and that such modification is essential for translation12,13. To study the mechanism of methylation we attempted to produce a specific methyl-deficient mRNA by the administration of ethionine. To monitor the effectiveness of the deprivation of methyl groups the synthesis of hormone-induced ovalbumin in immature chick oviducts was followed. Administration of oestrogen to immature chicks causes cytodifferentiation and growth of the primitive oviduct14–17. The tubular gland cells synthesise ovalbumin, conalbumin, ovomucoid and lysozyme which comprise 85–90% of the egg-white proteins18. The continuous presence of oestrogen is required for sustained synthesis of these proteins in immature chicks; withdrawal of oestrogen is accompanied by a gradual decline in cell-specific protein synthesis as well as in the weight of the oviduct and the RNA content of the tissue17. But, the tubular gland cells in the oviduct magnum during withdrawal are retained although they do not synthesise cell-specific secretory proteins17,19. Readministration of hormone to chicks after withdrawal (secondary stimulation) results in restoration of cell-specific protein synthesis without concomitant need for DNA synthesis17. During these studies ethionine unexpectedly simulated the effects of the injection of oestrogen for secondary stimulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Farber, E., Adv. Cancer Res., 7, 383–474 (1963).

    Article  CAS  PubMed  Google Scholar 

  2. Farber, E., Shull, K. H., Villa-Trevino, S., Lombardi, B., and Thomas, M., Nature, 203, 34–40 (1964).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Shull, K. H., J. biol. Chem., 237, 1734–1735 (1962).

    CAS  PubMed  Google Scholar 

  4. Villa-Trevino, S., Shull, K. H., and Farber, E., J. biol. Chem., 238, 1757–1763 (1962).

    Google Scholar 

  5. Villa-Trevino, S., Shull, K. H., and Farber, E., J. biol. Chem., 241, 4670–4674 (1966).

    CAS  PubMed  Google Scholar 

  6. Farber, E., and Corban, M. S., J. biol. Chem., 233, 625–630 (1958).

    CAS  PubMed  Google Scholar 

  7. Shull, K. H., McConomy, J., Vogt, M., Castillo, A., and Farber, E., J. biol. Chem., 241, 5060–5070 (1966).

    CAS  PubMed  Google Scholar 

  8. Moore, B. G., and Smith, R. C., Can. J. Biochem., 47, 561–565 (1969).

    Article  CAS  PubMed  Google Scholar 

  9. Moore, B. G., Can. J. Biochem., 48, 702–705 (1970).

    Article  CAS  PubMed  Google Scholar 

  10. Rajalakshmi, S., Proc. Am. Ass. Cancer Res., 14, 39 Abstr. (1973).

    Google Scholar 

  11. Kerr, S. J., Cancer Res., 35, 2969–2973 (1975).

    CAS  PubMed  Google Scholar 

  12. Rottman, F., Shatkin, A. J., and Perry, R. P., Cell, 3, 197–199 (1974).

    Article  CAS  PubMed  Google Scholar 

  13. Muthukrishnan, S., Both, G. W., Furuichi, Y., and Shatkin, A. J., Nature, 255, 33–37 (1975).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. O'Malley, B. W., McGuire, W. L., Kohler, P. O., and Korenman, S. G., Rec. Prog. Hormone Res., 25, 105–160 (1969).

    CAS  Google Scholar 

  15. Kohler, P. O., Grimley, P. M., and O'Malley, B. W., J. Cell Biol., 40, 8–26 (1969)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Oka, T., and Schimke, R. T., J. Cell Biol., 41, 816–823 (1969).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Oka, T., and Schimke, R. T., J. Cell Biol., 43, 123–137 (1969).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Palmiter, R. D., J. biol. Chem., 247, 6450–6461 (1972).

    CAS  PubMed  Google Scholar 

  19. Palmiter, R. D., Christensen, A. K., and Schimke, R. T., J. biol. Chem., 245, 833–845 (1970).

    CAS  PubMed  Google Scholar 

  20. Palmiter, R. D., Oka, T., and Schimke, R. T., J. biol. Chem., 246, 724–737 (1971).

    CAS  PubMed  Google Scholar 

  21. Sharma, O. K., Mays, L. L., and Borek, E., J. biol. Chem., 248, 7622–7624 (1973).

    CAS  PubMed  Google Scholar 

  22. Sharma, O. K., Mays, L. L., and Borek, E., Biochemistry, 14, 509–514 (1975).

    Article  CAS  PubMed  Google Scholar 

  23. Rhoads, R. E., McKnight, G. S., and Schimke, R. T., J. biol. Chem., 246, 7407–7410 (1971).

    CAS  PubMed  Google Scholar 

  24. Sharma, O. K., Roberts, W. K., Beezley, D., and Borek, E., Biochim. biophys. Acta, 390, 327–331 (1975).

    Article  CAS  PubMed  Google Scholar 

  25. Locke, M., and Krishman, J. Cell Biol., 50, 550–553 (1971).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Reynolds, E. S., J. Cell Biol., 17, 208–212 (1963).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Aitken, R. N. C., and Johnston, H. S., J. Anat., 97, 87–89 (1963).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Hendler, R. W., J. biophys. biochem. Cytol., 3, 325–330 (1957).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

SHARMA, O., BOREK, E. & MARTINEZ-HERNANDEZ, A. Induction of ovalbumin and conalbumin synthesis in immature chick oviducts by ethionine. Nature 259, 588–591 (1976). https://doi.org/10.1038/259588a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/259588a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing