Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Evidence against a dimeric structure for membrane-bound HLA antigens

Abstract

HUMAN histocompatibility (HLA) antigens are expressed on the surfaces of almost all cell types and according to various criteria are integral membrane glycoproteins1. They are composed of equimolar amounts of two dissimilar polypeptide chains which are non-covalently linked and which have molecular weights of about 43,000 and 12,000 as judged by polyacrylamide gel electrophoresis in sodium dodecyl sulphate (SDS)2–4. The larger chain carries the polymorphic allogeneic specificities and all of the carbohydrate2. The smaller chain represents β2-microglobulin, whose amino acid sequence shows marked homology to the CH3-domain of the γ-1 chain of immunoglobulin G (ref. 5). This homology and other arguments have led to the proposals that HLA antigens and immunoglobulins have a common evolutionary origin6,7, and that HLA antigens have an immunoglobulin-like structure in which two basic units of one each of the larger and smaller polypeptide chains are linked either non-covalently8 or by a disulphide bridge9,10 to give a 4-chain dimer of molecular weight 110,000. In contrast to the latter proposal, some results presented here suggest that HLA antigens do not have a dimeric structure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Snary, D., Goodfellow, P., Hayman, M. J., Bodmer, W. F., and Crumpton, M. J., Nature, 247, 457–461 (1974).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Cresswell, P., Turner, M. J., and Strominger, J. L., Proc. natn. Acad. Sci. U.S.A., 70, 1603–1607 (1973).

    Article  ADS  CAS  Google Scholar 

  3. Springer, T. A., Strominger, J. L., and Mann, D., Proc. natn. Acad. Sci. U.S.A., 71, 1539–1543 (1974).

    Article  ADS  CAS  Google Scholar 

  4. Tanigaki, N., and Pressman, D., Transplant. Rev., 21, 15–34 (1974).

    CAS  PubMed  Google Scholar 

  5. Cunningham, B. A., and Berggard, I., Transplant. Rev., 21, 3–14 (1974).

    CAS  PubMed  Google Scholar 

  6. Bodmer, W. F., Nature, 237, 139–145 (1972).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Gally, J. A., and Edelman, G. M., A. Rev. Genet., 6, 1–46 (1972).

    Article  CAS  Google Scholar 

  8. Rask, L., Ostberg, L., Lindblom, B., Fernstedt, Y., and Peterson, P. A., Transplant. Rev., 21, 85–105 (1974).

    CAS  PubMed  Google Scholar 

  9. Strominger, J. L., et al., Transplant. Rev., 21, 126–143 (1974).

    CAS  PubMed  Google Scholar 

  10. Cresswell, P., and Dawson, J. R., J. Immun., 114, 523–525 (1975).

    CAS  PubMed  Google Scholar 

  11. Bodmer, W., Tripp, M., and Bodmer, J., in Histocompatibility Testing 1967 (edit. by Curtoni, E. S., Mattiuz, P. L., and Tosi, R. M.), 341–350 (Munksgaard, Copenhagen, 1967).

    Google Scholar 

  12. Allan, D., and Crumpton, M. J., Biochem. J., 120, 133–143 (1970).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Siegel, L. M., and Monty, K. J., Biochim. biophys. Acta, 112, 346–362 (1966).

    Article  CAS  PubMed  Google Scholar 

  14. Andrews, P., Meth. biochem. Analysis, 18, 1–53 (1970).

    CAS  Google Scholar 

  15. Birk, Y., Gertler, A., and Khalef, S., Biochem. J., 87, 281–284 (1963).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hellsing, K., Biochem. J., 114, 145–149 (1969).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. de Lorenzo, F., Goldberger, R. F., Steers, E., Givol, D., and Anfinsen, C. B., J. biol. Chem., 241, 1562–1567 (1966).

    CAS  PubMed  Google Scholar 

  18. Spatz, L., and Strittmatter, P., J. biol. Chem., 248, 793–799 (1973).

    CAS  PubMed  Google Scholar 

  19. Robinson, N. C., and Tanford, C., Biochemistry, 14, 369–378 (1975).

    Article  CAS  PubMed  Google Scholar 

  20. Helenius, A., and Simons, K., Biochim. biophys. Acta, 415, 29–80 (1975).

    Article  CAS  PubMed  Google Scholar 

  21. Schwartz, B. D., Kato, K., Cullen, S. E., and Nathenson, S. G., Biochemistry, 12, 2157–2164 (1973).

    Article  CAS  PubMed  Google Scholar 

  22. Perutz, M. F., Eur. J. Biochem., 8, 455–466 (1969).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

SNARY, D., GOODFELLOW, P., BODMER, W. et al. Evidence against a dimeric structure for membrane-bound HLA antigens. Nature 258, 240–242 (1975). https://doi.org/10.1038/258240a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/258240a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing