Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Thermodynamic activation parameters of fish myofibrillar ATPase enzyme and evolutionary adaptations to temperature

Abstract

INTERSPECIFIC compensatory adaptations to environmental temperature which occur at the molecular level have been demonstrated for several enzyme systems1. Most of these studies have been concerned with either kinetic parameters such as Km (refs 2, 3) or thermodynamic parameters such as activation energy2,4. The significance of changes in these parameters in the overall mechanism of evolutionary temperature compensation is controversial1. In the case of activation energy (Ea), as calculated from Arrhenius' equation, a correlation exists with habitat temperature for some enzymes2,5,6 but not others3. Studies of activation energy are principally concerned with the enthalpy of activation (ΔH). There have been comparatively few studies of the free energy of activation (ΔG) between homologous enzymes from animals of different thermal environments7,8. Low et al.8 showed a correlation between ΔG for muscle type (M4) lactate dehydrogenase and body temperature. The relative importance of enthalpic (ΔH) and entropic (ΔS) activation between poikilotherms and homoeotherms was also shown to be different8. Similar results have been obtained for skeletal muscle myofibrillar ATPase activity7. Since these studies deal with homologous enzymes from animals with very different phylogenetic positions it is difficult to assess directly the adaptive significance of changes in the magnitude of these parameters.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hazel, J. R., and Prosser, C. L., Physiol. Rev., 54, 620 (1974).

    Article  CAS  Google Scholar 

  2. Somero, G. N., Am. Nat., 103, 517 (1969).

    Article  CAS  Google Scholar 

  3. Hochachka, P. W., and Somero, G. N., in Fish Physiology, VI (edit. by Hoar, W. S., and Randall, J. D.), 100 (Academic, New York, 1971).

    Google Scholar 

  4. Somero, G. N., Biochem. J., 114, 237 (1969).

    Article  CAS  Google Scholar 

  5. Kwon, T. W., and Olcott, H. S., Comp. Biochem. Physiol., 15, 7 (1965).

    Article  CAS  Google Scholar 

  6. Johnston, I. A., Walesby, N. J., Davison, W., and Goldspink, G., Nature, 254, 74 (1974).

    Article  Google Scholar 

  7. Bendall, J. R., in Muscles, Molecules and Movement, 51 (Heinemann, London, 1969).

    Google Scholar 

  8. Low, P. S., Bada, J. L., and Somero, G. N., Proc. natn. Acad. Sci. U.S.A., 70, 430 (1973).

    Article  ADS  CAS  Google Scholar 

  9. Hartshorne, D. J., Barry, E. M., Parker, L., and Fuchs, F., Biochim. biophys. Acta, 267, 190 (1972).

    Article  CAS  Google Scholar 

  10. Johnston, I. A., Davison, W., and Goldspink, G., FEBS Lett., 50, 293 (1974).

    Article  Google Scholar 

  11. Johnston, I. A., thesis. Univ. Hull (1973).

  12. Johnston, I. A., Frearson, N., and Goldspink, G., Experientia, 28, 713 (1972).

    Article  CAS  Google Scholar 

  13. Allen, R. J. L., Biochem. J., 34, 858 (1940).

    Article  CAS  Google Scholar 

  14. Rockstein, M., and Herron, P. W., Analyt. Chem., 23, 1500 (1951).

    Article  CAS  Google Scholar 

  15. Lehrer, G. M., and Barker, R., Biochemistry, 9, 1533 (1970).

    Article  CAS  Google Scholar 

  16. Lowey, S., Slayter, H., Weeds, A., and Baker, H., J. molec. Biol., 1, 42, 1.20 (1969).

    Article  Google Scholar 

  17. Godfrey, J. E., and Harrington, W. F., Biochemistry, 9, 886 (1970).

    Article  CAS  Google Scholar 

  18. Gornall, A. G., Bardawill, C. J., and David, M. M., J. biol. Chem., 177, 751 (1949).

    CAS  PubMed  Google Scholar 

  19. Lumry, R., and Rajender, S., Biopolymers, 9, 1125 (1970).

    Article  CAS  Google Scholar 

  20. Lumry, R., in Probes Struct. Funct. Macromolec. Membranes Proc. Colloq., 1971, Johnson Res. Fnd. 5th, Fifth Colloqu., 2 (edit. by Chance, B.), 353–366 V,5090 (Academic, New York, 1969).

    Google Scholar 

  21. Beetlestone, J. G., and Irvine, D. H., J. chem. Soc. A, V, 5090 (1964).

    Article  Google Scholar 

  22. Beetlestone, J. G., and Irvine, D. H., J. chem. Soc. A, III, 3271 (1965).

    Article  Google Scholar 

  23. Connell, J. J., Biochem. J., 75, 530 (1960).

    Article  CAS  Google Scholar 

  24. Connell, J. J., Biochem. J., 80, 503 (1961).

    Article  CAS  Google Scholar 

  25. Johnston, I. A., Frearson, N., and Goldspink, G., Biochem. J., 133, 735 (1973).

    Article  CAS  Google Scholar 

  26. Smith, C. L., Comp. Biochem. Physiol., 44 B, 789 (1973).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

JOHNSTON, I., GOLDSPINK, G. Thermodynamic activation parameters of fish myofibrillar ATPase enzyme and evolutionary adaptations to temperature. Nature 257, 620–622 (1975). https://doi.org/10.1038/257620a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/257620a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing