Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A new class of synaptic response involving calcium release in dendritic spines

Abstract

In the classical view, transmission of signals across synapses in the mammalian brain involves changes in the membrane potential of the postsynaptic cell. The use of high-resolution cellular imaging has revealed excitatory synapses at which postsynaptic, transient alterations in calcium ion concentration are tightly associated with electrical responses (reviewed in ref. 1). Here, by investigating the synapse between parallel glutamatergic fibres and Purkinje cells in the mouse cerebellum, we identify a class of postsynaptic responses that consist of transient increases in dendritic Ca2+ concentration but not changes in somatic membrane potential. Our results indicate that these synaptic Ca2+ transients are mediated by activation of metabotropic glutamate-responsive mGluR1-type receptors2,3,4 and require inositol-1,4,5-trisphosphate-mediated Ca2+ release5,6 from intradendritic stores. The new type of synaptic response is restricted to postsynaptic microdomains, which range, depending on the frequency of stimulation, from individual spines to small spinodendritic compartments. Thus, the synaptic Ca2+-release signal may be one of the critical cues that determine the input specificity of long-term depression, a well-established form of activity-dependent plasticity at these synapses7,8,9.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Local dendritic Ca2+ signals mediated by repetitive parallel fibre stimulation.
Figure 2: Pharmacological dissection of the complex synaptic Ca2+ signal.
Figure 3: Intracellular mechanisms underlying the delayed synaptic Ca2+ transients.
Figure 4: Mode of induction and time course of parallel-fibre-mediated synaptic Ca2+ transients.
Figure 5: Identification of synaptic Ca2+-release signals in spines and dendritic microdomains.

Similar content being viewed by others

References

  1. Eilers, J. & Konnerth, A. Dendritic signal integration. Curr. Opin. Neurobiol. 7, 385–390 (1997).

    Article  CAS  Google Scholar 

  2. Sladeczek, F., Pin, J.-P., Récasens, M., Bockaert, J. & Weiss, S. Glutamate stimulates inositol phosphate formation in striatal neurons. Nature 317, 717–719 (1985).

    Article  ADS  CAS  Google Scholar 

  3. Masu, M., Tanabe, Y., Tsuchida, K., Shigemoto, R. & Nakanishi, S. Sequence and expression of a metabotropic glutamate receptor. Nature 349, 760–765 (1991).

    Article  ADS  CAS  Google Scholar 

  4. Conn, P. J. & Pin, J. P. Pharmacology and functions of metabotropic glutamate receptors. Annu. Rev. Pharmacol. Toxicol. 37, 205–237 (1997).

    Article  CAS  Google Scholar 

  5. Berridge, M. Inositol trisphosphate and calcium signalling. Nature 361, 315–325 (1993).

    Article  ADS  CAS  Google Scholar 

  6. Furuichi, T., Kohda, K., Miyawaki, A. & Mikoshiba, K. Intracellular channels. Curr. Opin. Neurobiol. 4, 294–303 (1994).

    Article  CAS  Google Scholar 

  7. Ito, M. The Cerebellum and Neuronal Control(Raven, New York, (1984)).

    Google Scholar 

  8. Kano, M. & Kato, M. Quisqualate receptors are specifically involved in cerebellar synaptic plasticity. Nature 325, 276–279 (1987).

    Article  ADS  CAS  Google Scholar 

  9. Linden, D. J., Dickinson, M. H., Smeyne, M. & Connor, J. A. Along-term depression of AMPA currents in cultured cerebellar Purkinje neurons. Neuron 7, 81–89 (1991).

    Article  CAS  Google Scholar 

  10. Konnerth, A., Llano, I. & Armstrong, C. M. Synaptic currents in cerebellar Purkinje cells. Proc. Natl Acad. Sci. USA 87, 2662–2665 (1990).

    Article  ADS  CAS  Google Scholar 

  11. Eilers, J., Augustine, G. J. & Konnerth, A. Subthreshold synaptic Ca2+ signalling in fine dendrites and spines of cerebellar Purkinje neurons. Nature 373, 155–158 (1995).

    Article  ADS  CAS  Google Scholar 

  12. Denk, W., Sugimori, M. & Llinás, R. Two types of calcium responses limited to single spines in cerebellar Purkinje cells. Proc. Natl Acad. Sci. USA 92, 8279–8282 (1995).

    Article  ADS  CAS  Google Scholar 

  13. Batchelor, A. & Garthwaite, J. Novel synaptic potentials in cerebellar Purkinje cells: probable mediation by metabotropic glutamate receptors. Neuropharmacol. 32, 11–20 (1993).

    Article  CAS  Google Scholar 

  14. Batchelor, A. & Garthwaite, J. Frequency detection and temporally dispersed synaptic signal association through a metabotropic glutamate receptor pathway. Nature 385, 74–77 (1997).

    Article  ADS  CAS  Google Scholar 

  15. Eilers, J., Batchelor, A., Garthwaite, J. & Konnerth, A. Synaptic activation of metabotropic glutamate receptors produces dendritic calcium transients in cerebellar Purkinje cells. Pflügers Arch. 433(Suppl.), 549 (1997).

    Google Scholar 

  16. Martin, L. J., Blackstone, C. D., Huganir, R. L. & Price, D. L. Cellular localization of a metabotropic glutamate receptor in rat brain. Neuron 9, 259–270 (1992).

    Article  CAS  Google Scholar 

  17. Shigemoto, R., Nakanishi, S. & Mizuno, N. Distribution of the mRNA for a metabotropic glutamate receptor (mGluR1) in the central nervous system: an in situ hybridization study in adult and developing rat. J. Comp. Neurol. 322, 121–135 (1992).

    Article  CAS  Google Scholar 

  18. Khodakhah, K. & Armstrong, C. M. Inositol trisphosphate and ryanodine receptors share a common functional Ca2+ pool in cerebellar Purkinje neurons. Biophys. J. 73, 3349–3357 (1997).

    Article  CAS  Google Scholar 

  19. Garaschuk, O., Yaari, Y. & Konnerth, A. Release and sequestration of calcium from ryanodine-sensitive stores in rat hippocampal neurones. J. Physiol. (Lond.) 502, 13–30 (1997).

    Article  CAS  Google Scholar 

  20. Baude, A. et al. The metabotropic glutamate receptor (mGluR1 alpha) is concentrated at perisynaptic membrane of neuronal subpopulations as detected by immunogold reaction. Neuron 11, 771–787 (1993).

    Article  CAS  Google Scholar 

  21. Satoh, T. et al. The inositol 1,4,5-trisphosphate receptor in cerebellar Purkinje cells: quantitative immunogold labeling reveals concentration in an ER subcompartment. J. Cell Biol. 111, 615–624 (1990).

    Article  CAS  Google Scholar 

  22. Takei, K. et al. Ca2+ stores in Purkinje neurons: endoplasmic reticulum subcompartments demonstrated by the heterogeneous distribution of the InsP3receptor, Ca2+-ATPase, and calsequestrin. J. Neurosci. 12, 489–505 (1992).

    Article  CAS  Google Scholar 

  23. Frenguelli, B. G., Potier, B., Slater, N. T., Alford, S. & Collingridge, G. L. Metabotropic glutamate receptors and calcium signalling in dendrites of hippocampal CA1 neurones. Neuropharmacol. 32, 1229–1237 (1993).

    Article  CAS  Google Scholar 

  24. Korkotian, E. & Segal, M. Fast confocal imaging of calcium released from stores in dendritic spines. Eur. J. Neurosci. 10, 2076–2084 (1998).

    Article  CAS  Google Scholar 

  25. Aiba, A. et al. Deficient cerebellar long-term depression and impaired motor learning in mGluR1 mutant mice. Cell 79, 377–388 (1994).

    Article  CAS  Google Scholar 

  26. Conquet, F. et al. Motor deficit and impairment of synaptic plasticity in mice lacking mGluR1. Nature 372, 237–243 (1994).

    Article  ADS  CAS  Google Scholar 

  27. Inoue, T., Kato, K., Kohda, K. & Mikoshiba, K. Type 1 inositol 1,4,5-trisphosphate receptor is required for induction of long-term depression in cerebellar Purkinje neurons. J. Neurosci. 18, 5366–5373 (1998).

    Article  CAS  Google Scholar 

  28. Konnerth, A., Dreessen, J. & Augustine, G. J. Brief dendritic calcium signals initiate long-lasting synaptic depression in cerebellar Purkinje cells. Proc. Natl Acad. Sci. USA 89, 7051–7055 (1992).

    Article  ADS  CAS  Google Scholar 

  29. Khodakhah, K. & Armstrong, C. Induction of long-term depression and rebound potentiation by inositol trisphosphate in cerebellar Purkinje neurons. Proc. Natl Acad. Sci. USA 94, 14009–14014 (1997).

    Article  ADS  CAS  Google Scholar 

  30. Edwards, F., Konnerth, A., Sakmann, B. & Takahashi, T. Athin slice preparation for patch clamp recordings from neurones of the mammalian central nervous system. Pflügers Arch. 414, 600–612 (1989).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank O. Garaschuk for comments on the manuscript and R. Trautmann and E.Eilers for technical help. This work was supported by grants from the DFG and the HFSP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur Konnerth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takechi, H., Eilers, J. & Konnerth, A. A new class of synaptic response involving calcium release in dendritic spines. Nature 396, 757–760 (1998). https://doi.org/10.1038/25547

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/25547

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing