Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Coexisting conical bipolar and equatorial outflows from a high-mass protostar

Abstract

The BN/KL region in the Orion molecular cloud1 is an archetype for the study of the formation of stars much more massive than the Sun2. This region contains luminous young stars and protostars but, like most star-forming regions, is difficult to study in detail because of the obscuring effects of dust and gas. Our basic expectations are shaped to some extent by the present theoretical picture of star formation, the cornerstone of which is that protostars accrete gas from rotating equatorial disks and shed angular momentum by ejecting gas in bipolar outflows. The main source of the outflow in the BN/KL region3,4,5 may be an object known as radio source I (ref. 6), which is commonly believed to be surrounded by a rotating disk of molecular material7,8,9. Here we report high-resolution observations of silicon monoxide (SiO) and water maser emission from the gas surrounding source I. We show that within 60 AUof the source (about the size of the Solar System), the region is dominated by a conical bipolar outflow, rather than the expected disk. A slower outflow, close to the equatorial plane of the protostellar system, extends to radii of 1,000 AU.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Maser spots tracing outflowing gas in the BN/KL region of Orion.
Figure 2: A near-infrared image (at 3.8 µm wavelength) of the region near IRc227, with contours representing 8.4-GHz emission5 and the H2O maser distribution superposed.

Similar content being viewed by others

References

  1. Kleinmann, D. E. & Low, F. J. Discovery of an infrared nebula in Orion. Astrophys. J. 149, L1–L4 (1967).

    Article  ADS  Google Scholar 

  2. Genzel, R. & Stutzki, J. The Orion molecular cloud and star-forming region. Annu. Rev. Astron. Astrophys. 27, 41–85 (1989).

    Article  ADS  CAS  Google Scholar 

  3. Gezari, D. Y. Mid-infrared imaging of Orion BN/KL: astrometry of IRc2 and the SiO maser. Astrophys. J. 396, L43–L47 (1992).

    Article  ADS  Google Scholar 

  4. Gezari, D. Y. & Backman, D. E. 4.8–20 micron imaging of Orion BN/KL: II. A new look at luminosity sources and the role of IRc2. Astrophys. Space Sci. 224, 45–52 (1995).

    Google Scholar 

  5. Menten, K. M. & Reid, M. J. What is powering the Orion Kleinmann-Low infrared nebula? Astrophys. J. 445, L157–L160 (1995).

    Article  ADS  CAS  Google Scholar 

  6. Churchwell, E., Wood, D. O. S., Felli, M. & Massi, M. Solar system-sized condensations in the Orion nebula. Astrophys. J. 321, 516–519 (1987).

    Article  ADS  CAS  Google Scholar 

  7. Plambeck, R. L., Wright, M. C. H. & Carlstrom, J. E. Velocity structure of the Orion-IRc2 SiO maser: evidence for an 80 AU diameter circumstellar disk. Astrophys. J. 348, L65–L68 (1990).

    Article  ADS  CAS  Google Scholar 

  8. Wright, M. C. H., Plambeck, R. L., Mundy, L. G. & Looney, L. W. SiO emission from a 1,000 AU disk in Orion KL. Astrophys. J. 455, L185–L188 (1995).

    Article  ADS  CAS  Google Scholar 

  9. Barvainis, R. The polarization of the SiO masers in Orion: maser emission from a rotating, expanding disk? Astrophys. J. 279, 358–362 (1984).

    Article  ADS  CAS  Google Scholar 

  10. Thronson, H. A. J et al. The Orion star-forming region: far-infrared and radio molecular observations. Astron. J. 91, 1350–1356 (1986).

    Article  ADS  CAS  Google Scholar 

  11. Wright, M. C. H., Plambeck, R. L. & Wilner, D. J. Amultiline aperture synthesis study of Orion-KL. Astrophys. J. 469, 216–237 (1996).

    Article  ADS  CAS  Google Scholar 

  12. Genzel, R., Reid, M. J., Moran, J. M. & Downes, D. Proper motions and distances of H2O maser sources. I. The outflow in Orion-KL. Astrophys. J. 244, 884–902 (1981).

    Article  ADS  CAS  Google Scholar 

  13. Allen, D. A. & Burton, M. G. Explosive ejection of matter associated with star formation in the Orion nebula. Nature 363, 54–56 (1993).

    Article  ADS  Google Scholar 

  14. Jones, B. F. & Walker, M. F. Proper motions of Herbig-Haro objects. VI. The M42 HH objects. Astron. J. 90, 1320–1323 (1985).

    Article  ADS  CAS  Google Scholar 

  15. Plambeck, R. L., Wright, M. C. H., Mundy, L. G. & Looney, L. W. Subarcsecond-resolution 86 GHz continuum maps of Orion KL. Astrophys. J. 455, L189–L192 (1995).

    Article  ADS  Google Scholar 

  16. Morita, K.-I., Hasegawa, T., Ukita, N., Okumura, S. K. & Ishiguro, M. Accurate positions of SiO masers in active star forming regions: Orion-KL, W51-IRS2, and Sgr-B2 MD5. Publ. Astron. Soc. Jpn 44, 373–380 (1992).

    ADS  CAS  Google Scholar 

  17. Torrelles, J. M. et al. Radio continuum-H2O maser systems in NGC 2071: H2O masers tracing a jet (IRS 1) and a rotating proto-planetary disk of radius 20 AU (IRS 3). Astrophys. J. 505, 756–765 (1998).

    Article  ADS  CAS  Google Scholar 

  18. Zensus, J. A., Diamond, P. J. & Napier, P. J. (eds) Very Long Baseline Interferometry and the VLBA (Astron. Soc. Pacific, San Francisco, 1995).

    Google Scholar 

  19. Gaume, R. A., Wilson, T. L., Vrba, F. J., Johnston, K. J. & Schmid-Burgk, J. Water masers in Orion. Astrophys. J. 493, 940–949 (1998).

    Article  ADS  CAS  Google Scholar 

  20. Sugai, H. et al. Velocity field of the Orion-KL region in molecular hydrogen emission. Astrophys. J. 442, 674–678 (1995).

    Article  ADS  CAS  Google Scholar 

  21. Migenes, V., Johnston, K. J., Pauls, T. A. & Wilson, T. L. The distribution and kinematics of ammonia in the Orion-KL nebula: high-sensitivity VLA maps of the NH3(3,2) line. Astrophys. J. 347, 294–301 (1989).

    Article  ADS  CAS  Google Scholar 

  22. Greenhill, L. J. et al. in The Impact of VLBI on Astrophysics and Geophysics (eds Reid, M. J. & Moran, J. M.) 253–254 (Kluwer, Dordrecht, 1988).

    Book  Google Scholar 

  23. Hu, X. Kinematic studies of Herbig-Haro objects in the Orion nebula. Astron. J. 112, 2712–2717 (1996).

    Article  ADS  Google Scholar 

  24. Chandler, C. J. & De Pree, C. G. Vibrational ground-state SiO J = 1–0 emission in Orion IRc2 imaged with the VLA. Astrophys. J. 455, L67–L71 (1995).

    Article  ADS  CAS  Google Scholar 

  25. Lucas, R. et al. Interferometric observations of SiO v = 0 thermal emission from evolved stars. Astron. Astrophys. 262, 491–500 (1992).

    ADS  CAS  Google Scholar 

  26. Danchi, W. C., Bester, M., Degiacomi, C. G., Greenhill, L. J. & Townes, C. H. Characteristics of dust shells around 13 late-type stars. Astron. J. 107, 1469–1513 (1994).

    Article  ADS  Google Scholar 

  27. Dougados, C., Lena, P., Ridgway, S. T., Christou, J. C. & Probst, R. G. Near-infrared imaging of the Becklin-Neugebauer-IRc2 region in Orion with subarcsecond resolution. Astrophys. J. 406, 112–121 (1993).

    Article  ADS  Google Scholar 

  28. Schleuning, D. A. Far-infrared and submillimeter polarization of OMC-1: evidence for magnetically regulated star formation. Astrophys. J. 493, 811–825 (1998).

    Article  ADS  CAS  Google Scholar 

  29. Rao, R., Crutcher, R. M., Plambeck, R. L. & Wright, M. C. H. High-resolution millimeter-wave mapping of linearly polarized dust emission: magnetic field structure in Orion. Astrophys. J. 502, L75–L78 (1998).

    Article  ADS  Google Scholar 

  30. Shu, F. H., Najita, J., Ostriker, E. C. & Shang, H. Magnetocentrifugally driven flows from young stars and disks. V. Asymptotic collimation into jets. Astrophys. J. 455, L155–L158 (1995).

    Article  ADS  Google Scholar 

  31. Wardle, M. & Königl, A. The structure of protostellar accretion disks and the origin of bipolar flows. Astrophys. J. 410, 218–238 (1993).

    Article  ADS  Google Scholar 

  32. Garay, G., Moran, J. M. & Haschick, A. D. The Orion-KL super water maser. Astrophys. J. 338, 244–261 (1989).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Reid for assistance in recovering his VLA data, and C. Dougados and K.Menten for permission to use the infrared and radio images presented in Fig. 2 . The National Radio Astronomy Observatory is a facility of the US NSF operated under cooperative agreement by Associated Universities, Inc. C.S. was supported by the NSF REU program. C.R.G. was supported by the NSF Stellar Astronomy and Astrophysics program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. J. Greenhill.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greenhill, L., Gwinn, C., Schwartz, C. et al. Coexisting conical bipolar and equatorial outflows from a high-mass protostar. Nature 396, 650–653 (1998). https://doi.org/10.1038/25299

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/25299

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing