Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Crystal structure of the ligand-binding domain of the receptor tyrosine kinase EphB2

Abstract

The Eph receptors, which bind a group of cell-membrane-anchored ligands known as ephrins, represent the largest subfamily of receptor tyrosine kinases (RTKs)1. They are predominantly expressed in the developing and adult nervous system2 and are important in contact-mediated axon guidance3,4,5,6, axon fasciculation5,7 and cell migration8,9,10,11. Eph receptors are unique among other RTKs in that they fall into two subclasses with distinct ligand specificities12, and in that they can themselves function as ligands to activate bidirectional cell–cell signalling4,13,14. We report here the crystal structure at 2.9 Å resolution of the amino-terminal ligand-binding domain of the EphB2 receptor (also known as Nuk)15,16,17. The domain folds into a compact jellyroll β-sandwich composed of 11 antiparallel β-strands. Using structure-based mutagenesis, we have identified an extended loop that is important for ligand binding and class specificity. This loop, which is conserved within but not between Eph RTK subclasses, packs against the concave β-sandwich surface near positions at which missense mutations cause signalling defects18, localizing the ligand-binding region on the surface of the receptor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Alignment of amino-acid sequences of Eph globular domains.
Figure 2: Eph–ephrin recognition.
Figure 3
Figure 4: Structure of the N-terminal ligand-binding domain of EphB2.

Similar content being viewed by others

References

  1. Eph Nomenclature Committee. Unified nomenclature for Eph family receptors and their ligands theephrins.Cell 90, 403–440 (1997).

  2. Flanagan, J. G. & Vanderhaeghen, P. The ephrins and Eph receptors in neural development. Annu. Rev. Neurosci. 21, 309–345 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Drescher, U. et al. In vitro guidance of retinal ganglion cell axons by RAGS, a 25 kDa tectal protein related to ligands for Eph receptor tyrosine kinases. Cell 82, 359–370 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Henkemeyer, M. et al. Nuk controls pathfinding of commissural axons in the mammalian central nervous system. Cell 86, 35–46 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Orioli, D., Henkemeyer, M., Lemke, G., Klein, R. & Pawson, T. Sek4 and Nuk receptors cooperate in guidance of commissural axons and in palate formation. EMBO J. 15, 6035–6049 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Park, S., Frisen, J. & Barbacid, M. Aberrant axonal projections in mice lacking EphA8 (Eek) tyrosine protein receptors. EMBO J. 16, 3106–3114 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Winslow, J. W. et al. Cloning of AL-1, a ligand for an Eph-related tyrosine kinase receptor involved in axon bundle formation. Neuron 14, 973–981 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Smith, A., Robinson, V., Patel, K. & Wilkinson, D. G. The EphA4 and EphB1 receptor tyrosine kinases and ephrin-B2 ligand regulate targeted migration of branchial neural crest cells. Curr. Biol. 7, 561–570 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Xu, Q., Alldus, G., Holder, N. & Wilkinson, D. G. Expression of truncated Sek-1 receptor tyrosine kinase disrupts the segmental restriction of gene expression in the Xenopus and zebrafish hindbrain. Development 121, 4005–4016 (1995).

    CAS  PubMed  Google Scholar 

  10. Wang, H. U. & Anderson, D. J. Eph family transmembrane ligands can mediate repulsive guidance of trunk neural crest migration and motor axon outgrowth. Neuron 18, 383–396 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Krull, C. E. et al. Interactions of Eph-related receptors and ligands confer rostrocaudal pattern to trunk neural crest migration. Curr. Biol. 7, 571–580 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Gale, N. W. et al. Eph receptors and ligands comprise two major specificity subclasses and are reciprocally compartmentalized during embryogenesis. Neuron 17, 9–19 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Holland, S. J. et al. Bi-directional signalling through the EPH-family receptor Nuk and its transmembrane ligands. Nature 383, 722–725 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Bruckner, K., Pasquale, E. B. & Klein, R. Tyrosine phosphorylation of transmembrane ligands for Eph receptors. Science 275, 1640–1643 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Henkemeyer, M. et al. Immunolocalization of the Nuk receptor tyrosine kinase suggests roles in segmental patterning of the brain and axonogenesis. Oncogene 9, 1001–1014 (1994).

    CAS  PubMed  Google Scholar 

  16. Labrador, J. P., Brambilla, R. & Klein, R. The N-terminal globular domain of Eph receptors is sufficient for ligand binding and receptor signaling. EMBO J. 16, 3889–3897 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lackmann, M. et al. Distinct subdomains of the EphA3 receptor mediate ligand binding and receptor dimerization. J. Biol. Chem. 273, 20228–20237 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. George, S. E., Simokat, K., Hardin, J. & Chisholm, A. D. The VAB-1 Eph receptor tyrosine kinase functions in neural and epithelial morphogenesis in C. elegans. Cell 92, 633–643 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Lackmann, M. et al. Ligand for EPH-related kinase (LERK) 7 is the preferred high affinity ligand for the HEK receptor. J. Biol. Chem. 272, 16521–16530 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Rini, J. M. Lectin structure. Annu. Rev. Biophys. Biomol. Struct. 24, 551–577 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Holm, L. & Sander, C. Touring protein fold space with Dali/FSSP. Nucleic Acids Res. 26, 316–319 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Van der Geer, P., Hunter, T. & Lindberg, R. A. Receptor protein-tyrosine kinases and their signal transduction pathways. Annu. Rev. Cell Biol. 10, 251–337 (1994).

    Article  CAS  PubMed  Google Scholar 

  23. Banner, D. W. et al. Crystal structure of the soluble human 55 kd TNF receptor-human TNFβ complex: implications for TNF receptor activation. Cell 73, 431–445 (1993).

    Article  CAS  PubMed  Google Scholar 

  24. Sauter, N. K. et al. Binding of influenza virus hemagglutinin to analogs of its cell-surface receptor, sialic acid: analysis by proton nuclear magnetic resonance spectroscopy and X-ray crystallography. Biochemistry 31, 9609–9621 (1992).

    Article  CAS  PubMed  Google Scholar 

  25. Delbaere, L. T. et al. Structures of the lectin IV of Griffonia simplicifolia and its complex with the Lewis b human blood group determinant 2.0 Å resolution. J. Mol. Biol. 230, 950–965 (1993).

    Article  CAS  PubMed  Google Scholar 

  26. Otwinowski, Z. & Minor, W. in Data Collection and Processing (eds Sawyer, L., Isaacs, N. & Bailey, S.) 556–562 (SERC Daresbury Laboratory, Warrington, (1993)).

    Google Scholar 

  27. CCP4.The CCP4 suite: programs for x-ray crystallography. Acta Crystallogr. D 50, 760–763 (1994).

  28. Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  PubMed  Google Scholar 

  29. Brünger, A. T. X-PLOR v. 3.1 Manual (Yale Univ. Press, New Haven, (1993)).

    Google Scholar 

  30. Kabsch, W. & Sander, C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22, 2577–2637 (1983).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank I. Berry for technical support; P. D. Jeffrey for help with X-ray measurements; U. Drescher for ephrin-A5 DNA; and S. K. Burley, J. Goldberg, N. P. Pavletich and M.K. Rosen for useful suggestions. J.-P.H. is a Winston Foundation fellow. This work was supported by the DeWitt Wallace Fund and the V Foundation (D.B.N.), and by the Kent Waldrep National Paralysis Foundation for Basic Neuroscience Research (M.H.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitar B. Nikolov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Himanen, JP., Henkemeyer, M. & Nikolov, D. Crystal structure of the ligand-binding domain of the receptor tyrosine kinase EphB2. Nature 396, 486–491 (1998). https://doi.org/10.1038/24904

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/24904

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing