Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Histone acetyltransferase activity of CBP is controlled by cycle-dependent kinases and oncoprotein E1A

Abstract

Transforming viral proteins such as E1A force cells through the restriction point of the cell cycle into S phase by forming complexes with two cellular proteins1,2,3: the retinoblastoma protein (Rb)4, a transcriptional co-repressor5, and CBP/p300 (ref. 6), a transcriptional co-activator7,8,9. These two proteins locally influence chromatin structure: Rb recruits a histone deacetylase10,11,12, whereas CBP is a histone acetyltransferase13,14. Progression through the restriction point is triggered by phosphorylation of Rb, leading to disruption of Rb-associated repressive complexes and allowing the activation of S-phase genes15. Here we show that CBP, like Rb, is controlled by phosphorylation at the G1/S boundary, increasing its histone acetyltransferase activity. This enzymatic activation is mimicked by E1A.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CBP HAT activity is modulated in a cell-cycle-dependent manner.
Figure 2: Phosphorylation of CBP stimulates its HAT activity.
Figure 3: E1A mimics the effect of phosphorylation on CBP HAT activity.
Figure 4: Hypothetical function of CBP HAT activation near the G1/S transition.

Similar content being viewed by others

References

  1. Wang, H. G., Moran, E. & Yaciuk, P. E1A promotes association between p300 and pRB in multimeric complexes required for normal biological activity. J. Virol. 69, 7917–7924 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Dyson, N. & Harlow, E. Adenovirus E1A targets key regulators of cell proliferation. Cancer Surv. 12, 161–195 (1992).

    CAS  PubMed  Google Scholar 

  3. Wang, H. G. et al. Identification of specific adenovirus E1A N-terminal residues critical to the binding of cellular proteins and to the control of cell growth. J. Virol. 67, 476–488 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Kouzarides, T. Transcriptional control by the retinoblastoma protein. Semin. Cancer Biol. 6, 91–98 (1998).

    Article  Google Scholar 

  5. Weintraub, S. J., Prater, C. A. & Dean, D. C. Retinoblastoma protein switches the E2F site from positive to negative element. Nature 358, 259–261 (1992).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Chrivia, J. C. et al. Phosphorylated CREB binds specifically to the nuclear protein CBP. Nature 265, 855–859 (1993).

    Article  ADS  Google Scholar 

  7. Lundblad, J. R., Kwok, R. P., Laurance, M. E., Harter, M. L. & Goodman, R. H. Adenoviral E1A-associated protein p300 as a functional homologue of the transcriptional co-activator CBP. Nature 374, 85–88 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Kwok, R. P. et al. Nuclear protein CBP is a co-activator for the transcription factor CREB. Nature 370, 223–226 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Arany, Z., Newsome, D., Oldread, E., Livingston, D. M. & Eckner, R. Afamily of transcriptional adaptor proteins targeted by the E1A oncoprotein. Nature 374, 81–84 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Magnaghi-Jaulin, L. et al. Retinoblastoma protein represses transcription by recruiting a histone deacetylase. Nature 391, 601–605 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Brehm, A. et al. Retinoblastoma protein recruits histone deacetylases to repress transcription. Nature 391, 597–601 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Luo, R. X., Postigo, A. A. & Dean, D. C. Rb interacts with histone deacetylase to repress transcription. Cell 92, 463–473 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Bannister, A. J. & Kouzarides, T. The CBP co-activator is a histone acetyltransferase. Nature 384, 641–643 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Ogryzko, V. V., Schiltz, R. L., Russanova, V., Howard, B. H. & Nakatani, Y. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 87, 953–959 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Weinberg, R. A. The retinoblastoma gene and gene product. Cancer Surv. 12, 43–57 (1992).

    CAS  PubMed  Google Scholar 

  16. Kitabayashi, I. et al. Phosphorylation of the adenovirus E1A-associated 300 kDa protein in response to retinoic acid and E1A during the differentiation of F9 cells. EMBO J. 14, 3496–3509 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yaciuk, P. & Moran, E. Analysis with specific polyclonal antiserum indicates that the E1A-associated 300-kDa product is a stable nuclear phosphoprotein that undergoes cell cycle phase-specific modification. Mol. Cell. Biol. 11, 5389–5397 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Perkins, N. D. et al. Regulation of NF-κB by cyclin-dependent kinases associated with the p300 coactivator. Science 275, 523–527 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Borrow, J. et al. The translocation t(8;16)(p11;p13) of acute myeloid leukaemia fuses a putative acetyltransferase to the CREB-binding protein. Nature Genet. 14, 33–41 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Trouche, D. & Kouzarides, T. E2F1 and E1A(12S) have a homologous activation domain regulated by RB and CBP. Proc. Natl Acad. Sci. USA 93, 1439–1442 (1996).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nevins, J. R., DeGregori, J., Jakoi, L. & Leone, G. Functional analysis of E2F transcription factor. Methods Enzymol. 283, 205–219 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Goldman, P. S., Tran, V. K. & Goodman, R. H. The multifunctional role of the co-activator CBP in transcriptional regulation. Recent Prog. Horm. Res. 52, 103–119 (1997).

    CAS  PubMed  Google Scholar 

  23. Eckner, R., Yao, T. P., Oldread, E. & Livingston, D. M. Interaction and functional collaboration of p300/CBP and bHLH proteins in muscle and B-cell differentiation. Genes Dev. 10, 2478–2490 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. Puri, P. L. et al. Differential roles of p300 and PCAF acetyltransferases in muscle differentiation. Mol. Cell 1, 35–45 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Korzus, E. et al. Transcription factor-specific requirements for coactivators and their acetyltransferase functions. Science 279, 703–707 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Ramirez, S., Ait-Si-Ali, S., Robin, P., Trouche, D. & Harel-Bellan, A. The CREB-binding protein (CBP) cooperates with the serum response factor for transactivation of the c-fos serum response element. J. Biol. Chem. 272, 31016–31021 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Swope, D. L., Mueller, C. L. & Chrivia, J. C. CREB-binding protein activates transcription through multiple domains. J. Biol. Chem. 271, 28138–28145 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Martinez-Balbas, M. A. et al. The acetyl-transferase activity of CBP stimulates transcription. EMBO J. 17, 2886–2893 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Groisman, R. et al. Physical interaction between the mitogen-responsive serum response factor and myogenic bHLH proteins. J. Biol. Chem. 271, 5258–5264 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Ait-Si-Ali, S., Ramirez, S., Robin, P., Trouche, D. & Harel-Bellan, A. Arapid and sensitive assay for histone acetyl-transferase activity. Nucleic Acids Res. 26, 3869–3870 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Z. Mishal and A. Vervisch for help with cell-cycle analysis; T. Kouzarides, L. Meijer and D. A. Lawrence for the gift of materials; F. Dautry for critical reading of the manuscript; and A. Damany for her support. This work was supported by grants from the Ligue Nationale contre le Cancer, the Comité des Yvelines, the Comité de l'Essone and the Comité du Val de Marne, from the Association pour la Recherche sur le Cancer and from the Groupement des Entreprises Françaises dans la Lutte contre le Cancer. S.A.-S.-A. was awarded a fellowship from the Comité de la Haute-Saône; S.R., a travel award from the Colombian Government (Colciencias); F.-X.B., a fellowship from the Agence Nationale pour la Recherche sur le Sida; L.M.-J. and F.D., fellowships from the Comité de l'Essone.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Harel-Bellan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ait-Si-Ali, S., Ramirez, S., Barre, FX. et al. Histone acetyltransferase activity of CBP is controlled by cycle-dependent kinases and oncoprotein E1A. Nature 396, 184–186 (1998). https://doi.org/10.1038/24190

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/24190

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing