Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acute Leukemias

Time-course-dependent microvascular alterations in a model of myeloid leukemia in vivo

Abstract

Functional and morphological properties of tumor microcirculation play a pivotal role in tumor progression, metastasis and inefficiency of tumor therapies. Despite enormous insights into tumor angiogenesis in solid tumors, little is known about the time-course-dependent properties of tumor vascularization in hematologic malignancies. The aim of this study was to establish a model of myeloid leukemia, which allows long-term monitoring of tumor progression and associated microcirculation. Red fluorescent protein-transduced human leukemic cell lines (M-07e) were implanted into cranial windows of severe combined immunodeficient mice. Intravital microscopy was performed over 55 days to measure functional (microvascular permeability, tissue perfusion rate and leukocyte–endothelium interactions) and morphological vascular parameters (vessel density, distribution and diameter). Tumor progression was associated with elevated microvascular permeability and an initial angiogenic wave followed by decreased vessel density combined with reduced tissue perfusion due to loss in small vessels and development of heterogenous tumor vascularization. Following altered geometric resistance of microcirculation, leukocyte–endothelium interactions were more frequent without increased leukocyte extravasation. It was concluded that time-dependent alterations of leukemic tumor vascularization exhibit strong similarities to those found in solid tumors. The potential contribution to the development of barriers to drug delivery in leukemic tumors is discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. de Visser KE, Eichten A, Coussens LM . Paradoxical roles of the immune system during cancer development. Nat Rev Cancer 2006; 6: 24–37.

    Article  CAS  Google Scholar 

  2. Carmeliet P . Mechanisms of angiogenesis and arteriogenesis. Nat Med 2000; 6: 389–395.

    Article  CAS  Google Scholar 

  3. Sipkins DA, Wei X, Wu JW, Runnels JM, Cote D, Means TK et al. In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment. Nature 2005; 435: 969–973.

    Article  CAS  Google Scholar 

  4. Minchinton AI, Tannock IF . Drug penetration in solid tumours. Nat Rev Cancer 2006; 6: 583–592.

    Article  CAS  Google Scholar 

  5. Fiedler W, Graeven U, Ergun S, Verago S, Kilic N, Stockschlader M et al. Vascular endothelial growth factor, a possible paracrine growth factor in human acute myeloid leukemia. Blood 1997; 89: 1870–1875.

    CAS  Google Scholar 

  6. Litwin C, Leong KG, Zapf R, Sutherland H, Naiman SC, Karsan A . Role of the microenvironment in promoting angiogenesis in acute myeloid leukemia. Am J Hematol 2002; 70: 22–30.

    Article  Google Scholar 

  7. Bellamy WT, Richter L, Frutiger Y, Grogan TM . Expression of vascular endothelial growth factor and its receptors in hematopoietic malignancies. Cancer Res 1999; 59: 728–733.

    CAS  Google Scholar 

  8. Bieker R, Padro T, Kramer J, Steins M, Kessler T, Retzlaff S et al. Overexpression of basic fibroblast growth factor and autocrine stimulation in acute myeloid leukemia. Cancer Res 2003; 63: 7241–7246.

    CAS  Google Scholar 

  9. Fiedler W, Graeven U, Ergun S, Verago S, Kilic N, Stockschlader M et al. Vascular endothelial growth factor, a possible paracrine growth factor in human acute myeloid leukemia. Blood 1997; 89: 1870–1875.

    CAS  Google Scholar 

  10. Frankel AE, Gill PS . VEGF and myeloid leukemias. Leuk Res 2004; 28: 675–677.

    Article  CAS  Google Scholar 

  11. Jain RK . The Eugene M Landis Award 1996. Delivery of molecular and cellular medicine to solid tumors. Microcirculation 1997; 4: 1–23.

    Article  CAS  Google Scholar 

  12. Yanamandra N, Colaco NM, Parquet NA, Buzzeo RW, Boulware D, Wright G et al. Tipifarnib and bortezomib are synergistic and overcome cell adhesion-mediated drug resistance in multiple myeloma and acute myeloid leukemia. Clin Cancer Res 2006; 12: 591–599.

    Article  CAS  Google Scholar 

  13. Nefedova Y, Landowski TH, Dalton WS . Bone marrow stromal-derived soluble factors and direct cell contact contribute to de novo drug resistance of myeloma cells by distinct mechanisms. Leukemia 2003; 17: 1175–1182.

    Article  CAS  Google Scholar 

  14. Perez-Atayde AR, Sallan SE, Tedrow U, Connors S, Allred E, Folkman J . Spectrum of tumor angiogenesis in the bone marrow of children with acute lymphoblastic leukemia. Am J Pathol 1997; 150: 815–821.

    CAS  Google Scholar 

  15. Yang YC, Ricciardi S, Ciarletta A, Calvetti J, Kelleher K, Clark SC . Expression cloning of cDNA encoding a novel human hematopoietic growth factor: human homologue of murine T-cell growth factor P40. Blood 1989; 74: 1880–1884.

    CAS  Google Scholar 

  16. Avanzi GC, Lista P, Giovinazzo B, Miniero R, Saglio G, Benetton G et al. Selective growth response to IL-3 of a human leukaemic cell line with megakaryoblastic features. Br J Haematol 1988; 69: 359–366.

    Article  CAS  Google Scholar 

  17. Hansen-Algenstaedt N, Joscheck C, Schaefer C, Lamszus K, Wolfram L, Biermann T et al. Long-term observation reveals time-course-dependent characteristics of tumour vascularisation. Eur J Cancer 2005; 41: 1073–1085.

    Article  Google Scholar 

  18. Lipowsky HH, Zweifach BW . Applications of the ‘two-slit’ photometric technique to the measurement of microvascular volumetric flow rates. Microvasc Res 1978; 15: 93–101.

    Article  CAS  Google Scholar 

  19. Brizel DM, Klitzman B, Cook JM, Edwards J, Rosner G, Dewhirst MW . A comparison of tumor and normal tissue microvascular hematocrits and red cell fluxes in a rat window chamber model. Int J Radiat Oncol Biol Phys 1993; 25: 269–276.

    Article  CAS  Google Scholar 

  20. Yuan F, Leunig M, Huang SK, Berk DA, Papahadjopoulos D, Jain RK . Microvascular permeability and interstitial penetration of sterically stabilized (stealth) liposomes in a human tumor xenograft. Cancer Res 1994; 54: 3352–3356.

    CAS  Google Scholar 

  21. Padro T, Bieker R, Ruiz S, Steins M, Retzlaff S, Burger H et al. Overexpression of vascular endothelial growth factor (VEGF) and its cellular receptor KDR (VEGFR-2) in the bone marrow of patients with acute myeloid leukemia. Leukemia 2002; 16: 1302–1310.

    Article  CAS  Google Scholar 

  22. Iversen PO, Sorensen DR, Benestad HB . Inhibitors of angiogenesis selectively reduce the malignant cell load in rodent models of human myeloid leukemias. Leukemia 2002; 16: 376–381.

    Article  CAS  Google Scholar 

  23. Folkman J . Role of angiogenesis in tumor growth and metastasis. Semin Oncol 2002; 29 (6 Suppl 16): 15–18.

    Article  CAS  Google Scholar 

  24. Rygaard K, Spang-Thomsen M . Quantitation and Gompertzian analysis of tumor growth. Breast Cancer Res Treat 1997; 46: 303–312.

    Article  CAS  Google Scholar 

  25. Ramanujan S, Koenig GC, Padera TP, Stoll BR, Jain RK . Local imbalance of proangiogenic and antiangiogenic factors: a potential mechanism of focal necrosis and dormancy in tumors. Cancer Res 2000; 60: 1442–1448.

    CAS  Google Scholar 

  26. Heldin CH, Rubin K, Pietras K, Ostman A . High interstitial fluid pressure—an obstacle in cancer therapy. Nat Rev Cancer 2004; 4: 806–813.

    Article  CAS  Google Scholar 

  27. Carmeliet P, Jain RK . Angiogenesis in cancer and other diseases. Nature 2000; 407: 249–257.

    Article  CAS  Google Scholar 

  28. Griffon-Etienne G, Boucher Y, Brekken C, Suit HD, Jain RK . Taxane-induced apoptosis decompresses blood vessels and lowers interstitial fluid pressure in solid tumors: clinical implications. Cancer Res 1999; 59: 3776–3782.

    CAS  Google Scholar 

  29. Keyes KA, Mann L, Teicher B, Alvarez E . Site-dependent angiogenic cytokine production in human tumor xenografts. Cytokine 2003; 21: 98–104.

    Article  CAS  Google Scholar 

  30. Monsky WL, Carreira CM, Tsuzuki Y, Gohongi T, Fukumura D, Jain RK . Role of host microenvironment in angiogenesis and microvascular functions in human breast cancer xenografts: mammary fat pad versus cranial tumors. Clin Cancer Res 2002; 8: 1008–1013.

    CAS  Google Scholar 

  31. Weidner N, Folkman J, Pozza F, Bevilacqua P, Allred EN, Moore DH et al. Tumor angiogenesis: a new significant and independent prognostic indicator in early-stage breast carcinoma. J Natl Cancer Inst 1992; 84: 1875–1887.

    Article  CAS  Google Scholar 

  32. Borre M, Offersen BV, Nerstrom B, Overgaard J . Microvessel density predicts survival in prostate cancer patients subjected to watchful waiting. Br J Cancer 1998; 78: 940–944.

    Article  CAS  Google Scholar 

  33. Hussong JW, Rodgers GM, Shami PJ . Evidence of increased angiogenesis in patients with acute myeloid leukemia. Blood 2000; 95: 309–313.

    CAS  Google Scholar 

  34. Rockwell S . Oxygen delivery: implications for the biology and therapy of solid tumors. Oncol Res 1997; 9: 383–390.

    CAS  Google Scholar 

  35. Jain RK . The next frontier of molecular medicine: delivery of therapeutics. Nat Med 1998; 4: 655–657.

    Article  CAS  Google Scholar 

  36. Hansen-Algenstaedt N, Stoll BR, Padera TP, Dolmans DE, Hicklin DJ, Fukumura D et al. Tumor oxygenation in hormone-dependent tumors during vascular endothelial growth factor receptor-2 blockade, hormone ablation, and chemotherapy. Cancer Res 2000; 60: 4556–4560.

    CAS  Google Scholar 

  37. Less JR, Skalak TC, Sevick EM, Jain RK . Microvascular architecture in a mammary carcinoma: branching patterns and vessel dimensions. Cancer Res 1991; 51: 265–273.

    CAS  Google Scholar 

  38. Helmlinger G, Yuan F, Dellian M, Jain RK . Interstitial pH and pO2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation. Nat Med 1997; 3: 177–182.

    Article  CAS  Google Scholar 

  39. Dewhirst MW, Ong ET, Braun RD, Smith B, Klitzman B, Evans SM et al. Quantification of longitudinal tissue pO2 gradients in window chamber tumours: impact on tumour hypoxia. Br J Cancer 1999; 79: 1717–1722.

    Article  CAS  Google Scholar 

  40. Padera TP, Stoll BR, Tooredman JB, Capen D, di Tomaso E, Jain RK . Pathology: cancer cells compress intratumour vessels. Nature 2004; 427: 695.

    Article  CAS  Google Scholar 

  41. Less JR, Posner MC, Skalak TC, Wolmark N, Jain RK . Geometric resistance and microvascular network architecture of human colorectal carcinoma. Microcirculation 1997; 4: 25–33.

    Article  CAS  Google Scholar 

  42. Primeau AJ, Rendon A, Hedley D, Lilge L, Tannock IF . The distribution of the anticancer drug doxorubicin in relation to blood vessels in solid tumors. Clin Cancer Res 2005; 11 (24 Part 1): 8782–8788.

    Article  CAS  Google Scholar 

  43. Jain RK, Koenig GC, Dellian M, Fukumura D, Munn LL, Melder RJ . Leukocyte–endothelial adhesion and angiogenesis in tumors. Cancer Metastasis Rev 1996; 15: 195–204.

    Article  CAS  Google Scholar 

  44. Fukumura D, Salehi HA, Witwer B, Tuma RF, Melder RJ, Jain RK . Tumor necrosis factor alpha-induced leukocyte adhesion in normal and tumor vessels: effect of tumor type, transplantation site, and host strain. Cancer Res 1995; 55: 4824–4829.

    CAS  Google Scholar 

  45. Detmar M, Brown LF, Schon MP, Elicker BM, Velasco P, Richard L et al. Increased microvascular density and enhanced leukocyte rolling and adhesion in the skin of VEGF transgenic mice. J Invest Dermatol 1998; 111: 1–6.

    Article  CAS  Google Scholar 

  46. Tromp SC, oude Egbrink MG, Dings RP, van Velzen S, Slaaf DW, Hillen HF et al. Tumor angiogenesis factors reduce leukocyte adhesion in vivo. Int Immunol 2000; 12: 671–676.

    Article  CAS  Google Scholar 

  47. Lawrence MB, Springer TA . Leukocytes roll on a selectin at physiologic flow rates: distinction from and prerequisite for adhesion through integrins. Cell 1991; 65: 859–873.

    Article  CAS  Google Scholar 

  48. Dirkx AE, oude Egbrink MG, Castermans K, van der Schaft DW, Thijssen VL, Dings RP et al. Anti-angiogenesis therapy can overcome endothelial cell anergy and promote leukocyte–endothelium interactions and infiltration in tumors. FASEB J 2006; 20: 621–630.

    Article  CAS  Google Scholar 

  49. Boucher Y, Baxter LT, Jain RK . Interstitial pressure gradients in tissue-isolated and subcutaneous tumors: implications for therapy. Cancer Res 1990; 50: 4478–4484.

    CAS  Google Scholar 

  50. Leunig M, Yuan F, Menger MD, Boucher Y, Goetz AE, Messmer K et al. Angiogenesis, microvascular architecture, microhemodynamics, and interstitial fluid pressure during early growth of human adenocarcinoma LS174T in SCID mice. Cancer Res 1992; 52: 6553–6560.

    CAS  Google Scholar 

  51. Spiekermann K, Faber F, Voswinckel R, Hiddemann W . The protein tyrosine kinase inhibitor SU5614 inhibits VEGF-induced endothelial cell sprouting and induces growth arrest and apoptosis by inhibition of c-kit in AML cells. Exp Hematol 2002; 30: 767–773.

    Article  CAS  Google Scholar 

  52. Loges S, Tinnefeld H, Metzner A, Jucker M, Butzal M, Bruweleit M et al. Downregulation of VEGF-A, STAT5 and AKT in acute myeloid leukemia blasts of patients treated with SU5416. Leuk Lymphoma 2006; 47: 2601–2609.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a Werner-Otto Stiftung research grant to Nils Hansen-Algenstaedt. Christian Schaefer and Nils Hansen-Algenstaedt were members of the DFG Graduate Kolleg [GRK476]. Petra Algenstaedt was a member of the DFG Graduate Kolleg [GRK336].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N Hansen-Algenstaedt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schaefer, C., Krause, M., Fuhrhop, I. et al. Time-course-dependent microvascular alterations in a model of myeloid leukemia in vivo. Leukemia 22, 59–65 (2008). https://doi.org/10.1038/sj.leu.2404947

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404947

Keywords

This article is cited by

Search

Quick links