Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Lymphoma

PS-341 or a combination of arsenic trioxide and interferon-α inhibit growth and induce caspase-dependent apoptosis in KSHV/HHV-8-infected primary effusion lymphoma cells

Abstract

Kaposi's sarcoma (KS)-associated herpes virus (KSHV) is the causative agent of primary effusion lymphoma and of KS. Primary effusion lymphoma (PEL) is an aggressive proliferation of B cells. Conventional chemotherapy has limited benefits in PEL patients, and the prognosis is very poor. We previously reported that treatment of human T-cell leukemia virus type 1 (HTLV-1)-associated adult T-cell leukemia/lymphoma cells either with arsenic trioxide (As) combined to interferon-α (IFN-α) or with the bortezomib (PS-341) proteasome inhibitor induces cell cycle arrest and apoptosis, partly due to the reversal of the constitutive nuclear factor-κB (NF-κB) activation. PEL cells also display an activated NF-κB pathway that is necessary for their survival. This prompted us to investigate the effects of PS-341, or of the As/IFN-α combination on PEL cells. A dramatic inhibition of cell proliferation and induction of apoptosis was observed in PS-341 and in As/IFN-α treated cells. This was associated with the dissipation of the mitochondrial membrane potential, cytosolic release of cytochrome c, caspase activation and was reversed by the z-VAD caspase inhibitor. PS-341 and As/IFN-α treatment abrogated NF-κB translocation to the nucleus and decreased the levels of the anti-apoptotic protein Bcl-XL. Altogether, these results provide a rational basis for a future therapeutic use of PS-341 or combined As and IFN-α in PEL patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Chang Y, Cesarman E, Pessin MS, Lee F, Culpepper J, Knowles DM et al. Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi's sarcoma. Science 1994; 266: 1865–1869.

    Article  CAS  PubMed  Google Scholar 

  2. Ansari MQ, Dawson DB, Nador R, Rutherford C, Schneider NR, Latimer MJ et al. Primary body cavity-based AIDS-related lymphomas. Am J Clin Pathol 1996; 105: 221–229.

    Article  CAS  PubMed  Google Scholar 

  3. Cesarman E, Chang Y, Moore PS, Said JW, Knowles DM . Kaposi's sarcoma-associated herpesvirus-like DNA sequences in AIDS-related body-cavity-based lymphomas. N Engl J Med 1995; 332: 1186–1191.

    Article  CAS  PubMed  Google Scholar 

  4. Cesarman E, Nador RG, Aozasa K, Delsol G, Said JW, Knowles DM . Kaposi's sarcoma-associated herpesvirus in non-AIDS related lymphomas occurring in body cavities. Am J Pathol 1996; 149: 53–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Gessain A, Sudaka A, Briere J, Fouchard N, Nicola MA, Rio B et al. Kaposi sarcoma-associated herpes-like virus (human herpesvirus type 8) DNA sequences in multicentric Castleman's disease: is there any relevant association in non-human immunodeficiency virus-infected patients? Blood 1996; 87: 414–416.

    CAS  PubMed  Google Scholar 

  6. Soulier J, Grollet L, Oksenhendler E, Cacoub P, Cazals-Hatem D, Babinet P et al. Kaposi's sarcoma-associated herpesvirus-like DNA sequences in multicentric Castleman's disease. Blood 1995; 86: 1276–1280.

    CAS  PubMed  Google Scholar 

  7. Carbone A, Gloghini A, Vaccher E, Cerri M, Gaidano G, Dalla-Favera R et al. Kaposi's sarcoma-associated herpesvirus/human herpesvirus type 8-positive solid lymphomas: a tissue-based variant of primary effusion lymphoma. J Mol Diagn 2005; 7: 17–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chadburn A, Hyjek E, Mathew S, Cesarman E, Said J, Knowles DM . KSHV-positive solid lymphomas represent an extra-cavitary variant of primary effusion lymphoma. Am J Surg Pathol 2004; 28: 1401–1416.

    Article  PubMed  Google Scholar 

  9. Deloose ST, Smit LA, Pals FT, Kersten MJ, van Noesel CJ, Pals ST . High incidence of Kaposi sarcoma-associated herpesvirus infection in HIV-related solid immunoblastic/plasmablastic diffuse large B-cell lymphoma. Leukemia 2005; 19: 851–855.

    Article  CAS  PubMed  Google Scholar 

  10. Knowles DM . Etiology and pathogenesis of AIDS-related non-Hodgkin's lymphoma. Hematol Oncol Clin North Am 2003; 17: 785–820.

    Article  PubMed  Google Scholar 

  11. Carbone A, Gloghini A . AIDS-related lymphomas: from pathogenesis to pathology. Br J Haematol 2005; 130: 662–670.

    Article  CAS  PubMed  Google Scholar 

  12. Cesarman E . The role of Kaposi's sarcoma-associated herpesvirus (KSHV/HHV-8) in lymphoproliferative diseases. Recent Results Cancer Res 2002; 159: 27–37.

    Article  CAS  PubMed  Google Scholar 

  13. Damania B, Jung JU . Comparative analysis of the transforming mechanisms of Epstein-Barr virus, Kaposi's sarcoma-associated herpesvirus, and Herpesvirus saimiri. Adv Cancer Res 2001; 80: 51–82.

    Article  CAS  PubMed  Google Scholar 

  14. Boulanger E, Duprez R, Delabesse E, Gabarre J, Macintyre E, Gessain A . Mono/oligoclonal pattern of Kaposi sarcoma-associated herpesvirus (KSHV/HHV-8) episomes in primary effusion lymphoma cells. Int J Cancer 2005; 115: 511–518.

    Article  CAS  PubMed  Google Scholar 

  15. Drexler HG, Uphoff CC, Gaidano G, Carbone A . Lymphoma cell lines: in vitro models for the study of HHV-8+ primary effusion lymphomas (body cavity-based lymphomas). Leukemia 1998; 12: 1507–1517.

    Article  CAS  PubMed  Google Scholar 

  16. Aoki Y, Feldman GM, Tosato G . Inhibition of STAT3 signaling induces apoptosis and decreases survivin expression in primary effusion lymphoma. Blood 2003; 101: 1535–1542.

    Article  CAS  PubMed  Google Scholar 

  17. Petre CE, Sin SH, Dittmer DP . Functional p53 signaling in Kaposi's sarcoma-associated herpesvirus lymphomas: implications for therapy. J Virol 2007; 81: 1912–1922.

    Article  CAS  PubMed  Google Scholar 

  18. Uddin S, Hussain AR, Al-Hussein KA, Manogaran PS, Wickrema A, Gutierrez MI et al. Inhibition of phosphatidylinositol 3′-kinase/AKT signaling promotes apoptosis of primary effusion lymphoma cells. Clin Cancer Res 2005; 11: 3102–3108.

    Article  CAS  PubMed  Google Scholar 

  19. Wang YF, Hsieh YF, Lin CL, Lin JL, Chen CY, Chiou YH et al. Staurosporine-induced G2/M arrest in primary effusion lymphoma BCBL-1 cells. Ann Hematol 2004; 83: 739–744.

    Article  PubMed  Google Scholar 

  20. Lee RK, Cai JP, Deyev V, Gill PS, Cabral L, Wood C et al. Azidothymidine and interferon-alpha induce apoptosis in herpesvirus-associated lymphomas. Cancer Res 1999; 59: 5514–5520.

    CAS  PubMed  Google Scholar 

  21. Wu W, Rochford R, Toomey L, Harrington Jr W, Feuer G . Inhibition of HHV-8/KSHV infected primary effusion lymphomas in NOD/SCID mice by azidothymidine and interferon-alpha. Leuk Res 2005; 29: 545–555.

    Article  CAS  PubMed  Google Scholar 

  22. Ghosh SK, Wood C, Boise LH, Mian AM, Deyev VV, Feuer G et al. Potentiation of TRAIL-induced apoptosis in primary effusion lymphoma through azidothymidine-mediated inhibition of NF-kappa B. Blood 2003; 101: 2321–2327.

    Article  CAS  PubMed  Google Scholar 

  23. Sin SH, Roy D, Wang L, Staudt MR, Fakhari FD, Patel DD et al. Rapamycin is efficacious against primary effusion lymphoma (PEL) cell lines in vivo by inhibiting autocrine signaling. Blood 2007; 109: 2165–2173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Simonelli C, Spina M, Cinelli R, Talamini R, Tedeschi R, Gloghini A et al. Clinical features and outcome of primary effusion lymphoma in HIV-infected patients: a single-institution study. J Clin Oncol 2003; 21: 3948–3954.

    Article  PubMed  Google Scholar 

  25. Waddington TW, Aboulafia DM . Failure to eradicate AIDS-associated primary effusion lymphoma with high-dose chemotherapy and autologous stem cell reinfusion: case report and literature review. AIDS Patient Care STDS 2004; 18: 67–73.

    Article  PubMed  Google Scholar 

  26. Boulanger E, Daniel MT, Agbalika F, Oksenhendler E . Combined chemotherapy including high-dose methotrexate in KSHV/HHV8-associated primary effusion lymphoma. Am J Hematol 2003; 73: 143–148.

    Article  CAS  PubMed  Google Scholar 

  27. Halfdanarson TR, Markovic SN, Kalokhe U, Luppi M . A non-chemotherapy treatment of a primary effusion lymphoma: durable remission after intracavitary cidofovir in HIV negative PEL refractory to chemotherapy. Ann Oncol 2006; 17: 1849–1850.

    Article  CAS  PubMed  Google Scholar 

  28. Boulanger E, Gerard L, Gabarre J, Molina JM, Rapp C, Abino JF et al. Prognostic factors and outcome of human herpesvirus 8-associated primary effusion lymphoma in patients with AIDS. J Clin Oncol 2005; 23: 4372–4380.

    Article  PubMed  Google Scholar 

  29. Karin M . Nuclear factor-kappaB in cancer development and progression. Nature 2006; 441: 431–436.

    Article  CAS  PubMed  Google Scholar 

  30. Keller SA, Schattner EJ, Cesarman E . Inhibition of NF-kappaB induces apoptosis of KSHV-infected primary effusion lymphoma cells. Blood 2000; 96: 2537–2542.

    CAS  PubMed  Google Scholar 

  31. Field N, Low W, Daniels M, Howell S, Daviet L, Boshoff C et al. KSHV vFLIP binds to IKK-gamma to activate IKK. J Cell Sci 2003; 116: 3721–3728.

    Article  CAS  PubMed  Google Scholar 

  32. Liu L, Eby MT, Rathore N, Sinha SK, Kumar A, Chaudhary PM . The human herpes virus 8-encoded viral FLICE inhibitory protein physically associates with and persistently activates the Ikappa B kinase complex. J Biol Chem 2002; 277: 13745–13751.

    Article  CAS  PubMed  Google Scholar 

  33. Guasparri I, Keller SA, Cesarman E . KSHV vFLIP is essential for the survival of infected lymphoma cells. J Exp Med 2004; 199: 993–1003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sanz MA, Fenaux P, Lo Coco F . Arsenic trioxide in the treatment of acute promyelocytic leukemia. A review of current evidence. Haematologica 2005; 90: 1231–1235.

    CAS  PubMed  Google Scholar 

  35. de The H, Lavau C, Marchio A, Chomienne C, Degos L, Dejean A . The PML-RAR alpha fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR. Cell 1991; 66: 675–684.

    Article  CAS  PubMed  Google Scholar 

  36. Warrell Jr RP, de The H, Wang ZY, Degos L . Acute promyelocytic leukemia. N Engl J Med 1993; 329: 177–189.

    Article  CAS  PubMed  Google Scholar 

  37. Bazarbachi A, Ghez D, Lepelletier Y, Nasr R, de The H, El-Sabban ME et al. New therapeutic approaches for adult T-cell leukaemia. Lancet Oncol 2004; 5: 664–672.

    Article  CAS  PubMed  Google Scholar 

  38. Bazarbachi A, El-Sabban ME, Nasr R, Quignon F, Awaraji C, Kersual J et al. Arsenic trioxide and interferon-alpha synergize to induce cell cycle arrest and apoptosis in human T-cell lymphotropic virus type I-transformed cells. Blood 1999; 93: 278–283.

    CAS  PubMed  Google Scholar 

  39. El-Sabban ME, Nasr R, Dbaibo G, Hermine O, Abboushi N, Quignon F et al. Arsenic-interferon-alpha-triggered apoptosis in HTLV-I transformed cells is associated with tax down-regulation and reversal of NF-kappa B activation. Blood 2000; 96: 2849–2855.

    CAS  PubMed  Google Scholar 

  40. Mahieux R, Hermine O . In vivo and in vitro treatment of HTLV-1 and HTLV-2 infected cells with arsenic trioxide and interferon-alpha. Leuk Lymphoma 2005; 46: 347–355.

    Article  CAS  PubMed  Google Scholar 

  41. Mahieux R, Pise-Masison C, Gessain A, Brady JN, Olivier R, Perret E et al. Arsenic trioxide induces apoptosis in human T-cell leukemia virus type 1- and type 2-infected cells by a caspase-3-dependent mechanism involving Bcl-2 cleavage. Blood 2001; 98: 3762–3769.

    Article  CAS  PubMed  Google Scholar 

  42. Nasr R, Rosenwald A, El-Sabban ME, Arnulf B, Zalloua P, Lepelletier Y et al. Arsenic/interferon specifically reverses 2 distinct gene networks critical for the survival of HTLV-1-infected leukemic cells. Blood 2003; 101: 4576–4582.

    Article  CAS  PubMed  Google Scholar 

  43. Hermine O, Dombret H, Poupon J, Arnulf B, Lefrere F, Rousselot P et al. Phase II trial of arsenic trioxide and alpha interferon in patients with relapsed/refractory adult T-cell leukemia/lymphoma. Hematol J 2004; 5: 130–134.

    Article  CAS  PubMed  Google Scholar 

  44. Teicher BA, Ara G, Herbst R, Palombella VJ, Adams J . The proteasome inhibitor PS-341 in cancer therapy. Clin Cancer Res 1999; 5: 2638–2645.

    CAS  PubMed  Google Scholar 

  45. Park DJ, Lenz HJ . The role of proteasome inhibitors in solid tumors. Ann Med 2004; 36: 296–303.

    Article  CAS  PubMed  Google Scholar 

  46. Ma MH, Yang HH, Parker K, Manyak S, Friedman JM, Altamirano C et al. The proteasome inhibitor PS-341 markedly enhances sensitivity of multiple myeloma tumor cells to chemotherapeutic agents. Clin Cancer Res 2003; 9: 1136–1144.

    CAS  PubMed  Google Scholar 

  47. Sayers TJ, Brooks AD, Koh CY, Ma W, Seki N, Raziuddin A et al. The proteasome inhibitor PS-341 sensitizes neoplastic cells to TRAIL-mediated apoptosis by reducing levels of c-FLIP. Blood 2003; 102: 303–310.

    Article  CAS  PubMed  Google Scholar 

  48. Nasr R, El-Sabban ME, Karam JA, Dbaibo G, Kfoury Y, Arnulf B et al. Efficacy and mechanism of action of the proteasome inhibitor PS-341 in T-cell lymphomas and HTLV-I associated adult T-cell leukemia/lymphoma. Oncogene 2005; 24: 419–430.

    Article  CAS  PubMed  Google Scholar 

  49. Mitra-Kaushik S, Harding JC, Hess JL, Ratner L . Effects of the proteasome inhibitor PS-341 on tumor growth in HTLV-1 Tax transgenic mice and Tax tumor transplants. Blood 2004; 104: 802–809.

    Article  CAS  PubMed  Google Scholar 

  50. Tan C, Waldmann TA . Proteasome inhibitor PS-341, a potential therapeutic agent for adult T-cell leukemia. Cancer Res 2002; 62: 1083–1086.

    CAS  PubMed  Google Scholar 

  51. Arvanitakis L, Mesri EA, Nador RG, Said JW, Asch AS, Knowles DM et al. Establishment and characterization of a primary effusion (body cavity-based) lymphoma cell line (BC-3) harboring Kaposi's sarcoma-associated herpesvirus (KSHV/HHV-8) in the absence of Epstein-Barr virus. Blood 1996; 88: 2648–2654.

    CAS  PubMed  Google Scholar 

  52. Renne R, Zhong W, Herndier B, McGrath M, Abbey N, Kedes D et al. Lytic growth of Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) in culture. Nat Med 1996; 2: 342–346.

    Article  CAS  PubMed  Google Scholar 

  53. Kharbanda S, Pandey P, Schofield L, Israels S, Roncinske R, Yoshida K et al. Role for Bcl-XL as an inhibitor of cytosolic cytochrome c accumulation in DNA damage-induced apoptosis. Proc Natl Acad Sci USA 1997; 94: 6939–6942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhu Q, Zhang JW, Zhu HQ, Shen YL, Flexor M, Jia PM et al. Synergic effects of arsenic trioxide and cAMP during acute promyelocytic leukemia cell maturation subtends a novel signaling cross-talk. Blood 2002; 99: 1014–1022.

    Article  CAS  PubMed  Google Scholar 

  55. Zhu J, Koken MH, Quignon F, Chelbi-Alix MK, Degos L, Wang ZY et al. Arsenic-induced PML targeting onto nuclear bodies: implications for the treatment of acute promyelocytic leukemia. Proc Natl Acad Sci USA 1997; 94: 3978–3983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gatto S, Scappini B, Pham L, Onida F, Milella M, Ball G et al. The proteasome inhibitor PS-341 inhibits growth and induces apoptosis in Bcr/Abl-positive cell lines sensitive and resistant to imatinib mesylate. Haematologica 2003; 88: 853–863.

    CAS  PubMed  Google Scholar 

  57. Hideshima T, Richardson PG, Anderson KC . Targeting proteasome inhibition in hematologic malignancies. Rev Clin Exp Hematol 2003; 7: 191–204.

    CAS  PubMed  Google Scholar 

  58. Pham LV, Tamayo AT, Yoshimura LC, Lo P, Ford RJ . Inhibition of constitutive NF-kappa B activation in mantle cell lymphoma B cells leads to induction of cell cycle arrest and apoptosis. J Immunol 2003; 171: 88–95.

    Article  CAS  PubMed  Google Scholar 

  59. Adams J, Palombella VJ, Sausville EA, Johnson J, Destree A, Lazarus DD et al. Proteasome inhibitors: a novel class of potent and effective antitumor agents. Cancer Res 1999; 59: 2615–2622.

    CAS  PubMed  Google Scholar 

  60. Ling YH, Liebes L, Jiang JD, Holland JF, Elliott PJ, Adams J et al. Mechanisms of proteasome inhibitor PS-341-induced G(2)-M-phase arrest and apoptosis in human non-small cell lung cancer cell lines. Clin Cancer Res 2003; 9: 1145–1154.

    CAS  PubMed  Google Scholar 

  61. An WG, Hwang SG, Trepel JB, Blagosklonny MV . Protease inhibitor-induced apoptosis: accumulation of wt p53, p21WAF1/CIP1, and induction of apoptosis are independent markers of proteasome inhibition. Leukemia 2000; 14: 1276–1283.

    Article  CAS  PubMed  Google Scholar 

  62. Alam A, Cohen LY, Aouad S, Sekaly RP . Early activation of caspases during T lymphocyte stimulation results in selective substrate cleavage in nonapoptotic cells. J Exp Med 1999; 190: 1879–1890.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Olson NE, Graves JD, Shu GL, Ryan EJ, Clark EA . Caspase activity is required for stimulated B lymphocytes to enter the cell cycle. J Immunol 2003; 170: 6065–6072.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This project is supported by grants from the American University of Beirut (Medical Practice Plan and University Research Board) and from Cancéropole. RM is supported by INSERM. DA is supported by CNRS. Contributions: RAM, RK, MEES, OH, HT, RM and AB designed the experiments. RAM, RK, DA, HEH, HD, SM and RM performed the experiments. RAM, AB and RM analyzed the data. RAM, RK, MEES, MEES, OH, AG, HT, RM and AB wrote the article.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R Mahieux or A Bazarbachi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abou-Merhi, R., Khoriaty, R., Arnoult, D. et al. PS-341 or a combination of arsenic trioxide and interferon-α inhibit growth and induce caspase-dependent apoptosis in KSHV/HHV-8-infected primary effusion lymphoma cells. Leukemia 21, 1792–1801 (2007). https://doi.org/10.1038/sj.leu.2404797

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404797

Keywords

This article is cited by

Search

Quick links