Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Leading Article
  • Published:

Deguelin inhibits expression of IκBα protein and induces apoptosis of B-CLL cells in vitro

Abstract

We investigated if deguelin, a naturally occurring rotenoid, was able to inhibit nuclear factor kappa B (NF-κB)-binding protein (IκBα) expression and to induce apoptosis in B-cell chronic lymphocytic leukemia (B-CLL) cells in vitro. Deguelin-induced cell death in the majority of B-CLL cells and was found to be more toxic toward B-CLL cells than to the normal mononuclear or B-cells, suggesting selectivity towards the malignant cells. Deguelin was found to reduce IκBα protein expression, and thus interacts with the NFκB pathway. The induced apoptosis was characterized by processing of caspase-9 and -3 and poly-(ADP)-ribose-polymerase cleavage. Exposure of B-CLL cells to deguelin resulted in Bcl2-associated protein (Bax) conformational changes and downregulation of the key survival protein myeloid cell leukemia sequence 1 (Mcl-1), which is associated with response to treatment in B-CLL patients. Deguelin retained its ability to induce apoptosis in B-CLL cells in the presence of interleukin-4, a pro-survival cytokine in B-CLL, and when cultured with 50% human serum. These data indicate that deguelin is able to induce apoptosis in B-CLL cells in the presence of pro-survival signals and thus merits further investigation for clinical application either as a single agent or in combination with other anticancer agents.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

References

  1. Ravelo AG, Estevez-Braun A, Chavez-Orellana H, Perez-Sacau E, Mesa-Siverio D . Recent studies on natural products as anticancer agents. Curr Top Med Chem 2004; 4: 241–265.

    Article  CAS  PubMed  Google Scholar 

  2. Hamblin T . Natural products and the treatment of leukemia. Leuk Res 2006; 30: 649–650.

    Article  PubMed  Google Scholar 

  3. Ito C, Itoigawa M, Kojima N, Tan HT, Takayasu J, Tokuda H et al. Cancer chemopreventive activity of rotenoids from Derris trifoliata. Planta Med 2004; 70: 585–588.

    Article  PubMed  Google Scholar 

  4. Kinghorn AD, Su BN, Jang DS, Chang LC, Lee D, Gu JQ et al. Natural inhibitors of carcinogenesis. Planta Med 2004; 70: 691–705.

    Article  CAS  PubMed  Google Scholar 

  5. Liu HL, Chen Y, Cui GH, Wu QL, He J . Regulating expressions of cyclin D1, pRb, and anti-cancer effects of deguelin on human Burkittos lymphoma Daudi cells in vitro. Acta Pharmacol Sin 2005; 26: 873–880.

    Article  CAS  PubMed  Google Scholar 

  6. Murillo G, Salti GI, Kosmeder II JW, Pezzuto JM, Mehta RG . Deguelin inhibits the growth of colon cancer cells through the induction of apoptosis and cell cycle arrest. Eur J Cancer 2002; 38: 2446–2454.

    Article  CAS  PubMed  Google Scholar 

  7. Udeani GO, Gerhauser C, Thomas CF, Moon RC, Kosmeder JW, Kinghorn AD et al. Cancer chemopreventive activity mediated by deguelin, a naturally occurring rotenoid. Cancer Res 1997; 57: 3424–3428.

    CAS  PubMed  Google Scholar 

  8. Lee HY, Oh SH, Woo JK, Kim WY, Van Pelt CS, Price RE et al. Chemopreventive effects of deguelin, a novel Akt inhibitor, on tobacco-induced lung tumorigenesis. J Natl Cancer Inst 2005; 97: 1695–1699.

    Article  CAS  PubMed  Google Scholar 

  9. Yan Y, Wang Y, Tan Q, Lubet RA, You M . Efficacy of deguelin and silibinin on benzo(a)pyrene-induced lung tumorigenesis in A/J mice. Neoplasia 2005; 7: 1053–1057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lee HY . Molecular mechanisms of deguelin-induced apoptosis in transformed human bronchial epithelial cells. Biochem Pharmacol 2004; 68: 1119–1124.

    Article  CAS  PubMed  Google Scholar 

  11. Crowell JA, Steele VE . AKT and the phosphatidylinositol 3-kinase/AKT pathway: important molecular targets for lung cancer prevention and treatment. J Natl Cancer Inst 2003; 95: 252–253.

    Article  PubMed  Google Scholar 

  12. Chun KH, Kosmeder II JW, Sun S, Pezzuto JM, Lotan R, Hong WK et al. Effects of deguelin on the phosphatidylinositol 3-kinase/Akt pathway and apoptosis in premalignant human bronchial epithelial cells. J Natl Cancer Inst 2003; 95: 291–302.

    Article  CAS  PubMed  Google Scholar 

  13. Bortul R, Tazzari PL, Billi AM, Tabellini G, Mantovani I, Cappellini A et al. Deguelin, A PI3K/AKT inhibitor, enhances chemosensitivity of leukaemia cells with an active PI3K/AKT pathway. Br J Haematol 2005; 129: 677–686.

    Article  CAS  PubMed  Google Scholar 

  14. Chen WH, Chen Y, Cui GH . Deguelin inhibits expression of IkappaBalpha protein in Raji and U937 cells. Acta Pharmacol Sin 2006; 27: 485–490.

    Article  PubMed  Google Scholar 

  15. Carney DA, Wierda WG . Genetics and molecular biology of chronic lymphocytic leukemia. Curr Treat Options Oncol 2005; 6: 215–225.

    Article  PubMed  Google Scholar 

  16. Rozman C, Montserrat E . Chronic lymphocytic leukemia. N Engl J Med 1995; 333: 1052–1057.

    Article  CAS  PubMed  Google Scholar 

  17. Freedman AS, Boyd AW, Bieber FR, Daley J, Rosen K, Horowitz JC et al. Normal cellular counterparts of B cell chronic lymphocytic leukemia. Blood 1987; 70: 418–427.

    CAS  PubMed  Google Scholar 

  18. Caligaris-Cappio F, Hamblin TJ . B-cell chronic lymphocytic leukemia: a bird of a different feather. J Clin Oncol 1999; 17: 399–408.

    Article  CAS  PubMed  Google Scholar 

  19. Packham G, Stevenson FK . Bodyguards and assassins: Bcl-2 family proteins and apoptosis control in chronic lymphocytic leukaemia. Immunology 2005; 114: 441–449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Alkan S, Huang Q, Ergin M, Denning MF, Nand S, Maududi T et al. Survival role of protein kinase C (PKC) in chronic lymphocytic leukemia and determination of isoform expression pattern and genes altered by PKC inhibition. Am J Hematol 2005; 79: 97–106.

    Article  CAS  PubMed  Google Scholar 

  21. Crespo M, Bosch F, Villamor N, Bellosillo B, Colomer D, Rozman M et al. ZAP-70 expression as a surrogate for immunoglobulin-variable-region mutations in chronic lymphocytic leukemia. N Engl J Med 2003; 348: 1764–1775.

    Article  CAS  PubMed  Google Scholar 

  22. Battle TE, Arbiser J, Frank DA . The natural product honokiol induces caspase-dependent apoptosis in B-cell chronic lymphocytic leukemia (B-CLL) cells. Blood 2005; 106: 690–697.

    Article  CAS  PubMed  Google Scholar 

  23. Cuni S, Perez-Aciego P, Perez-Chacon G, Vargas JA, Sanchez A, Martin-Saavedra FM et al. A sustained activation of PI3K/NF-kappaB pathway is critical for the survival of chronic lymphocytic leukemia B cells. Leukemia 2004; 18: 1391–1400.

    Article  CAS  PubMed  Google Scholar 

  24. Furman RR, Asgary Z, Mascarenhas JO, Liou HC, Schattner EJ . Modulation of NF-kappa B activity and apoptosis in chronic lymphocytic leukemia B cells. J Immunol 2000; 164: 2200–2206.

    Article  CAS  PubMed  Google Scholar 

  25. Endo T, Nishio M, Enzler T, Cottam HB, Fukuda T, James DF et al. BAFF and APRIL support chronic lymphocytic leukemia B-cell survival through activation of the canonical NF-κB pathway. Blood 2007; 109: 703–710.

    Article  CAS  PubMed  Google Scholar 

  26. Kipps TJ . Chronic lymphocytic leukemia and related diseases. In: Beutler E, Lichtman MA, Coller BS, Kipps TJ, Seligsohn U (eds). Williams Hematology 6th edn. McGraw-Hill: New York, 2001, pp. 1163–1194.

    Google Scholar 

  27. Rassenti LZ, Huynh L, Toy TL, Chen L, Keating MJ, Gribben JG et al. ZAP-70 compared with immunoglobulin heavy-chain gene mutation status as a predictor of disease progression in chronic lymphocytic leukemia. N Engl J Med 2004; 351: 893–901.

    Article  CAS  PubMed  Google Scholar 

  28. Zent CS, Chen JB, Kurten RC, Kaushal GP, Marie Lacy H, Schichman SA . Alemtuzumab (CAMPATH 1H) does not kill chronic lymphocytic leukemia cells in serum free medium. Leuk Res 2004; 28: 495–507.

    Article  CAS  PubMed  Google Scholar 

  29. Bellosillo B, Villamor N, Lopez-Guillermo A, Marce S, Bosch F, Campo E et al. Spontaneous and drug-induced apoptosis is mediated by conformational changes of Bax and Bak in B-cell chronic lymphocytic leukemia. Blood 2002; 100: 1810–1816.

    Article  CAS  PubMed  Google Scholar 

  30. Hsu YT, Youle RJ . Bax in murine thymus is a soluble monomeric protein that displays differential detergent-induced conformations. J Biol Chem 1998; 273: 10777–10783.

    Article  CAS  PubMed  Google Scholar 

  31. Desagher S, Osen-Sand A, Nichols A, Eskes R, Montessuit S, Lauper S et al. Bid-induced conformational change of Bax is responsible for mitochondrial cytochrome c release during apoptosis. J Cell Biol 1999; 144: 891–901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kitada S, Andersen J, Akar S, Zapata JM, Takayama S, Krajewski S et al. Expression of apoptosis-regulating proteins in chronic lymphocytic leukemia: correlations with In vitro and In vivo chemoresponses. Blood 1998; 91: 3379–3389.

    CAS  PubMed  Google Scholar 

  33. Saxena A, Viswanathan S, Moshynska O, Tandon P, Sankaran K, Sheridan DP . Mcl-1 and Bcl-2/Bax ratio are associated with treatment response but not with Rai stage in B-cell chronic lymphocytic leukemia. Am J Hematol 2004; 75: 22–33.

    Article  CAS  PubMed  Google Scholar 

  34. Barragan M, Bellosillo B, Campas C, Colomer D, Pons G, Gil J . Involvement of protein kinase C and phosphatidylinositol 3-kinase pathways in the survival of B-cell chronic lymphocytic leukemia cells. Blood 2002; 99: 2969–2976.

    Article  CAS  PubMed  Google Scholar 

  35. Faderl S, Keating MJ, Do KA, Liang SY, Kantarjian HM, O’Brien S et al. Expression profile of 11 proteins and their prognostic significance in patients with chronic lymphocytic leukemia (CLL). Leukemia 2002; 16: 1045–1052.

    Article  CAS  PubMed  Google Scholar 

  36. Hanada M, Delia D, Aiello A, Stadtmauer E, Reed JC . bcl-2 gene hypomethylation and high-level expression in B-cell chronic lymphocytic leukemia. Blood 1993; 82: 1820–1828.

    CAS  PubMed  Google Scholar 

  37. Mariano MT, Moretti L, Donelli A, Grantini M, Montagnani G, Di Prisco AU et al. bcl-2 gene expression in hematopoietic cell differentiation. Blood 1992; 80: 768–775.

    CAS  PubMed  Google Scholar 

  38. Hamblin T . Natural products and the treatment of leukemia. Leuk Res 2006; 30: 649–650.

    Article  PubMed  Google Scholar 

  39. Byrd JC, Lucas DM, Mone AP, Kitner JB, Drabick JJ, Grever MR . KRN5500: a novel therapeutic agent with in vitro activity against human B-cell chronic lymphocytic leukemia cells mediates cytotoxicity via the intrinsic pathway of apoptosis. Blood 2003; 101: 4547–4550.

    Article  CAS  PubMed  Google Scholar 

  40. Lee YK, Shanafelt TD, Bone ND, Strege AK, Jelinek DF, Kay NE . VEGF receptors on chronic lymphocytic leukemia (CLL) B cells interact with STAT 1 and 3: implication for apoptosis resistance. Leukemia 2005; 19: 513–523.

    Article  CAS  PubMed  Google Scholar 

  41. Inoue S, Snowden RT, Dyer MJ, Cohen GM . CDDO induces apoptosis via the intrinsic pathway in lymphoid cells. Leukemia 2004; 18: 948–952.

    Article  CAS  PubMed  Google Scholar 

  42. Battle TE, Frank DA . STAT1 mediates differentiation of chronic lymphocytic leukemia cells in response to Bryostatin 1. Blood 2003; 102: 3016–3024.

    Article  CAS  PubMed  Google Scholar 

  43. Shanafelt TD, Lee YK, Call TG, Nowakowski GS, Dingli D, Zent CS et al. Clinical effects of oral green tea extracts in four patients with low grade B-cell malignancies. Leuk Res 2006; 30: 707–712.

    Article  CAS  PubMed  Google Scholar 

  44. Kitada S, Pedersen IM, Schimmer AD, Reed JC . Dysregulation of apoptosis genes in hematopoietic malignancies. Oncogene 2002; 21: 3459–3474.

    Article  CAS  PubMed  Google Scholar 

  45. Kitada S, Reed JC . MCL-1 promoter insertions dial-up aggressiveness of chronic leukemia. J Natl Cancer Inst 2004; 96: 642–643.

    Article  PubMed  Google Scholar 

  46. Pepper C, Hoy T, Bentley DP . Bcl-2/Bax ratios in chronic lymphocytic leukaemia and their correlation with in vitro apoptosis and clinical resistance. Br J Cancer 1997; 76: 935–938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Flinn IW, Byrd JC, Bartlett N, Kipps T, Gribben J, Thomas D et al. Flavopiridol administered as a 24-hour continuous infusion in chronic lymphocytic leukemia lacks clinical activity. Leuk Res 2005; 29: 1253–1257.

    Article  CAS  PubMed  Google Scholar 

  48. Kitada S, Zapata JM, Andreeff M, Reed JC . Protein kinase inhibitors flavopiridol and 7-hydroxy-staurosporine down-regulate antiapoptosis proteins in B-cell chronic lymphocytic leukemia. Blood 2000; 96: 393–397.

    CAS  PubMed  Google Scholar 

  49. Byrd JC, Shinn C, Waselenko JK, Fuchs EJ, Lehman TA, Nguyen PL et al. Flavopiridol induces apoptosis in chronic lymphocytic leukemia cells via activation of caspase-3 without evidence of bcl-2 modulation or dependence on functional p53. Blood 1998; 92: 3804–3816.

    CAS  PubMed  Google Scholar 

  50. Konig A, Schwartz GK, Mohammad RM, Al-Katib A, Gabrilove JL . The novel cyclin-dependent kinase inhibitor flavopiridol downregulates Bcl-2 and induces growth arrest and apoptosis in chronic B-cell leukemia lines. Blood 1997; 90: 4307–4312.

    CAS  PubMed  Google Scholar 

  51. Wickremasinghe RG, Ganeshaguru K, Jones DT, Lindsay C, Spanswick VJ, Hartley JA et al. Autologous plasma activates Akt/protein kinase B and enhances basal survival and resistance to DNA damage-induced apoptosis in B-chronic lymphocytic leukaemia cells. Br J Haematol 2001; 114: 608–615.

    Article  CAS  PubMed  Google Scholar 

  52. Frankfurt OS, Byrnes JJ, Villa L . Protection from apoptotic cell death by interleukin-4 is increased in previously treated chronic lymphocytic leukemia patients. Leuk Res 1997; 21: 9–16.

    Article  CAS  PubMed  Google Scholar 

  53. Udeani GO, Zhao GM, Shin YG, Kosmeder II JW, Beecher CW, Kinghorn AD et al. Pharmacokinetics of deguelin, a cancer chemopreventive agent in rats. Cancer Chemother Pharmacol 2001; 47: 263–268.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Research-fund of Ghent University (Belgium). BG is a PhD student, supported by the Research-fund of Ghent University (Belgium). B Vanhoecke was supported by the ‘Vlaamse Liga tegen Kanker’ (E Verschueren Fonds) and by the ‘FOD volksgezondheid FYTOES project’ (grant number B/06950/01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Deforce.

Additional information

Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geeraerts, B., Vanhoecke, B., Vanden Berghe, W. et al. Deguelin inhibits expression of IκBα protein and induces apoptosis of B-CLL cells in vitro. Leukemia 21, 1610–1618 (2007). https://doi.org/10.1038/sj.leu.2404788

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404788

Keywords

This article is cited by

Search

Quick links