Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Clonality of the stem cell compartment during evolution of myelodysplastic syndromes and other bone marrow failure syndromes

Abstract

Clonal hematopoiesis, observed in certain forms of marrow failure including aplastic anemia (AA), may be due to stem cell depletion. Alternatively, oligoclonality may be a result of recruitment of a preexisting defective clone, such as in paroxysmal nocturnal hemoglobinuria (PNH) or myelodysplastic syndromes (MDS). In PNH, exogenous permissive factors may be required for dominance of the abnormal clone, while in MDS, stem cells undergo transformation steps leading to a growth advantage. Stem or multipotent progenitor cell involvement in PNH is evidenced by long-term persistence of a clonal defect and its presence in all blood cells. In MDS, some clonal aberrations may have a ‘founder-effect’ and additional defects are secondary. Metaphase cytogenetics measures the proportion of clonal cells within dividing progenitor but not mature cells. Owing to low resolution, lesions can be found in only 50% of MDS patients. This shortcoming may be overcome by application of newer technologies such as comparative genomic hybridization and SNP array-based karyotyping (SNP-A). SNP-A facilitates identification of cryptic lesions in bone marrow failure patients with normal or abnormal cytogenetics and allows for detection of loss of heterozygosity as a result of uniparental disomy, a lesion frequently found in MDS.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Young NS, Calado RT, Scheinberg P . Current concepts in the pathophysiology and treatment of aplastic anemia. Blood 2006; 108: 2509–2519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Young NS . Acquired aplastic anemia. Ann Intern Med 2002; 136: 534–546.

    Article  PubMed  Google Scholar 

  3. Maciejewski JP, Rivera C, Kook H, Dunn D, Young NS . Relationship between bone marrow failure syndromes and the presence of glycophosphatidylinositol-anchored protein-deficient clones. Br J Haematol 2001; 115: 1015–1022.

    Article  CAS  PubMed  Google Scholar 

  4. Parker C, Omine M, Richards S, Nishimura J, Bessler M, Ware R et al. Diagnosis and management of paroxysmal nocturnal hemoglobinuria. Blood 2005; 106: 3699–3709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Maciejewski JP, Risitano A, Sloand EM, Nunez O, Young NS . Distinct clinical outcomes for cytogenetic abnormalities evolving from aplastic anemia. Blood 2002; 99: 3129–3135.

    Article  CAS  PubMed  Google Scholar 

  6. Chen G, Zeng W, Miyazato A, Billings E, Maciejewski JP, Kajigaya S et al. Distinctive gene expression profiles of CD34 cells from patients with myelodysplastic syndrome characterized by specific chromosomal abnormalities. Blood 2004; 104: 4210–4218.

    Article  CAS  PubMed  Google Scholar 

  7. Chen G, Kirby M, Zeng W, Young NS, Maciejewski JP . Superior growth of glycophosphatidylinositol-anchored protein-deficient progenitor cells in vitro is due to the higher apoptotic rate of progenitors with normal phenotype in vivo. Exp Hematol 2002; 30: 774–782.

    Article  CAS  PubMed  Google Scholar 

  8. Young NS, Maciejewski JP . Genetic and environmental effects in paroxysmal nocturnal hemoglobinuria: this little PIG-A goes ‘Why? Why? Why?’. J Clin Invest 2000; 106: 637–641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Maciejewski JP, Selleri C . Evolution of clonal cytogenetic abnormalities in aplastic anemia. Leuk Lymphoma 2004; 45: 433–440.

    Article  PubMed  Google Scholar 

  10. Steensma DP, List AF . Genetic testing in the myelodysplastic syndromes: molecular insights into hematologic diversity. Mayo Clin Proc 2005; 80: 681–698.

    Article  CAS  PubMed  Google Scholar 

  11. Boultwood J, Wainscoat JS . Clonality in the myelodysplastic syndromes. Int J Hematol 2001; 73: 411–415.

    Article  PubMed  Google Scholar 

  12. Maciejewski JP, Selleri C, Sato T, Anderson S, Young NS . A severe and consistent deficit in marrow and circulating primitive hematopoietic cells (long-term culture-initiating cells) in acquired aplastic anemia. Blood 1996; 88: 1983–1991.

    Article  CAS  PubMed  Google Scholar 

  13. Maciejewski JP, Sloand EM, Sato T, Anderson S, Young NS . Impaired hematopoiesis in paroxysmal nocturnal hemoglobinuria/aplastic anemia is not associated with a selective proliferative defect in the glycosylphosphatidylinositol-anchored protein-deficient clone. Blood 1997; 89: 1173–1181.

    Article  CAS  PubMed  Google Scholar 

  14. Sato T, Kim S, Selleri C, Young NS, Maciejewski JP . Measurement of secondary colony formation after 5 weeks in long-term cultures in patients with myelodysplastic syndrome. Leukemia 1998; 12: 1187–1194.

    Article  CAS  PubMed  Google Scholar 

  15. Maciejewski JP, Risitano A . Hematopoietic stem cells in aplastic anemia4. Arch Med Res 2003; 34: 520–527.

    Article  CAS  PubMed  Google Scholar 

  16. Molldrem JJ, Caples M, Mavroudis D, Plante M, Young NS, Barrett AJ . Antithymocyte globulin for patients with myelodysplastic syndrome. Br J Haematol 1997; 99: 699–705.

    Article  CAS  PubMed  Google Scholar 

  17. Young NS, Barrett AJ . Immune modulation of myelodysplasia: rationale and therapy. In: Bennett J (eds). The Myelodysplastic Syndromes: Pathobiology and Clinical Management. Marcel Dekker: New York, 2002, pp 373–397.

    Google Scholar 

  18. Molldrem JJ, Leifer E, Bahceci E, Saunthararajah Y, Rivera M, Dunbar C et al. Antithymocyte globulin for treatment of the bone marrow failure associated with myelodysplastic syndromes 9. Ann Intern Med 2002; 137: 156–163.

    Article  PubMed  Google Scholar 

  19. Wlodarski MW, Gondek LP, Nearman ZP, Plasilova M, Kalaycio M, Hsi ED et al. Molecular strategies for detection and quantitation of clonal cytotoxic T-cell responses in aplastic anemia and myelodysplastic syndrome. Blood 2006; 108: 2632–2641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen G, Zeng W, Maciejewski J, Keyvanfar K, Billings E, Young N . Differential gene expression in hematopoietic progenitors from paroxysmal nocturnal hemoglobinuria patients reveals an apoptosis/immune response in ‘normal’ phenotype cells. Leukemia 2005; 19: 217–222.

    Article  Google Scholar 

  21. Yamaguchi H, Calado RT, Ly H, Kajigaya S, Baerlocher GM, Chanock SJ et al. Mutations in TERT, the gene for telomerase reverse transcriptase, in aplastic anemia. N Engl J Med 2005; 352: 1413–1424.

    Article  CAS  PubMed  Google Scholar 

  22. Yamaguchi H, Baerlocher GM, Lansdorp PM, Chanock SJ, Nunez O, Sloand E et al. Mutations of the human telomerase RNA gene (TERC) in aplastic anemia and myelodysplastic syndrome. Blood 2003; 102: 908–1916.

    Article  CAS  Google Scholar 

  23. Fogarty PF, Yamaguchi H, Wiestner A, Baerlocher GM, Sloand E, Zeng WS et al. Late presentation of dyskeratosis congenita as apparently acquired aplastic anaemia due to mutations in telomerase RNA. Lancet 2003; 362: 1628–1630.

    Article  CAS  PubMed  Google Scholar 

  24. Brummendorf TH, Rufer N, Holyoake TL, Maciejewski J, Barnett MJ, Eaves CJ et al. Telomere length dynamics in normal individuals and in patients with hematopoietic stem cell-associated disorders. Ann N Y Acad Sci 2001; 938: 293–303.

    Article  CAS  PubMed  Google Scholar 

  25. Brummendorf TH, Maciejewski JP, Mak J, Young NS, Lansdorp PM . Telomere length in leukocyte subpopulations of patients with aplastic anemia. Blood 2001; 97: 895–900.

    Article  CAS  PubMed  Google Scholar 

  26. Lepelley P, Soenen V, Preudhomme C, Merlat A, Cosson A, Fenaux P . bcl-2 expression in myelodysplastic syndromes and its correlation with hematological features, p53 mutations and prognosis. Leukemia 1995; 9: 726–730.

    CAS  PubMed  Google Scholar 

  27. Shih LY, Huang CF, Wang PN, Wu JH, Lin TL, Dunn P et al. Acquisition of FLT3 or N-ras mutations is frequently associated with progression of myelodysplastic syndrome to acute myeloid leukemia. Leukemia 2004; 18: 466–475.

    Article  CAS  PubMed  Google Scholar 

  28. Horiike S, Kita-Sasai Y, Nakao M, Taniwaki M . Configuration of the TP53 gene as an independent prognostic parameter of myelodysplastic syndrome. Leuk Lymphoma 2003; 44: 915–922.

    Article  CAS  PubMed  Google Scholar 

  29. Side LE, Curtiss NP, Teel K, Kratz C, Wang PW, Larson RA et al. RAS, FLT3, and TP53 mutations in therapy-related myeloid malignancies with abnormalities of chromosomes 5 and 7. Genes Chromosomes Cancer 2004; 39: 217–223.

    Article  CAS  PubMed  Google Scholar 

  30. Nishimura JJ, Hirota T, Kanakura Y, Machii T, Kageyama T, Doi S et al. Long-term support of hematopoiesis by a single stem cell clone in patients with paroxysmal nocturnal hemoglobinuria. Blood 2002; 99: 2748–2751.

    Article  CAS  Google Scholar 

  31. Araten DJ, Nafa K, Pakdeesuwan K, Luzzatto L . Clonal populations of hematopoietic cells with paroxysmal nocturnal hemoglobinuria genotype and phenotype are present in normal individuals 5. Proc Natl Acad Sci USA 1999; 96: 5209–5214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nilsson L, strand-Grundstrom I, Arvidsson I, Jacobsson B, Hellstrom-Lindberg E, Hast R et al. Isolation and characterization of hematopoietic progenitor/stem cells in 5q-deleted myelodysplastic syndromes: evidence for involvement at the hematopoietic stem cell level. Blood 2000; 96: 2012–2021.

    Article  CAS  PubMed  Google Scholar 

  33. Nilsson L, strand-Grundstrom I, Anderson K, Arvidsson I, Hokland P, Bryder D et al. Involvement and functional impairment of the CD34(+)CD38(-)Thy-1(+) hematopoietic stem cell pool in myelodysplastic syndromes with trisomy 8. Blood 2002; 100: 259–267.

    Article  CAS  PubMed  Google Scholar 

  34. Saitoh K, Miura I, Takahashi N, Miura AB . Fluorescence in situ hybridization of progenitor cells obtained by fluorescence-activated cell sorting for the detection of cells affected by chromosome abnormality trisomy 8 in patients with myelodysplastic syndromes. Blood 1998; 92: 2886–2892.

    Article  CAS  PubMed  Google Scholar 

  35. Iwanaga M, Furukawa K, Amenomori T, Mori H, Nakamura H, Fuchigami K et al. Paroxysmal nocturnal haemoglobinuria clones in patients with myelodysplastic syndromes. Br J Haematol 1998; 102: 465–474.

    Article  CAS  PubMed  Google Scholar 

  36. White NJ, Nacheva E, Asimakopoulos FA, Bloxham D, Paul B, Green AR . Deletion of chromosome 20q in myelodysplasia can occur in a multipotent precursor of both myeloid cells and B cells. Blood 1994; 83: 2809–2816.

    Article  CAS  PubMed  Google Scholar 

  37. Fagioli F, Cuneo A, Carli MG, Bardi A, Piva N, Previati R et al. Chromosome aberrations in CD34-positive acute myeloid leukemia. Correlation with clinicopathologic features. Cancer Genet Cytogenet 1993; 71: 119–124.

    Article  CAS  PubMed  Google Scholar 

  38. Hast R, Eriksson M, Widell S, Arvidsson I, Bemell P . Neutrophil dysplasia is not a specific feature of the abnormal chromosomal clone in myelodysplastic syndromes. Leuk Res 1999; 23: 579–584.

    Article  CAS  PubMed  Google Scholar 

  39. Anastasi J, Feng J, Le Beau MM, Larson RA, Rowley JD, Vardiman JW . Cytogenetic clonality in myelodysplastic syndromes studied with fluorescence in situ hybridization: lineage, response to growth factor therapy, and clone expansion. Blood 1993; 81: 1580–1585.

    Article  CAS  PubMed  Google Scholar 

  40. Bernell P, Jacobsson B, Nordgren A, Hast R . Clonal cell lineage involvement in myelodysplastic syndromes studied by fluorescence in situ hybridization and morphology. Leukemia 1996; 10: 662–668.

    CAS  PubMed  Google Scholar 

  41. Gerritsen WR, Donohue J, Bauman J, Jhanwar SC, Kernan NA, Castro-Malaspina H et al. Clonal analysis of myelodysplastic syndrome: monosomy 7 is expressed in the myeloid lineage, but not in the lymphoid lineage as detected by fluorescent in situ hybridization. Blood 1992; 80: 217–224.

    Article  CAS  PubMed  Google Scholar 

  42. Lubbert M, Daskalakis M, Kunzmann R, Engelhardt M, Guo Y, Wijermans P . Nonclonal neutrophil responses after successful treatment of myelodysplasia with low-dose 5-aza-2′-deoxycytidine (decitabine). Leuk Res 2004; 28: 1267–1271.

    Article  CAS  PubMed  Google Scholar 

  43. Bernell P, Arvidsson I, Hast R, Jacobsson B, Stenke L . Differences in cell lineage involvement between MDS-AML and de novo AML studied by fluorescence in situ hybridization in combination with morphology. Eur J Haematol 1997; 58: 241–245.

    Article  CAS  PubMed  Google Scholar 

  44. Meeker AK, De Marzo AM . Recent advances in telomere biology: implications for human cancer. Curr Opin Oncol 2004; 16: 32–38.

    Article  CAS  PubMed  Google Scholar 

  45. Pei J, Kruger WD, Testa JR . High-resolution analysis of 9p loss in human cancer cells using single nucleotide polymorphism-based mapping arrays. Cancer Genet Cytogenet 2006; 170: 65–68.

    Article  CAS  PubMed  Google Scholar 

  46. Baumann P, Cech TR . Pot1, the putative telomere end-binding protein in fission yeast and humans. Science 2001; 292: 1171–1175.

    Article  CAS  PubMed  Google Scholar 

  47. Loayza D, De Lange T . POT1 as a terminal transducer of TRF1 telomere length control. Nature 2003; 423: 1013–1018.

    Article  CAS  PubMed  Google Scholar 

  48. Wu L, Multani AS, He H, Cosme-Blanco W, Deng Y, Deng JM et al. Pot1 deficiency initiates DNA damage checkpoint activation and aberrant homologous recombination at telomeres. Cell 2006; 126: 49–62.

    Article  CAS  PubMed  Google Scholar 

  49. Hockemeyer D, Sfeir AJ, Shay JW, Wright WE, de LT . POT1 protects telomeres from a transient DNA damage response and determines how human chromosomes end. EMBO J 2005; 24: 2667–2678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Churikov D, Wei C, Price CM . Vertebrate POT1 restricts G-overhang length and prevents activation of a telomeric DNA damage checkpoint but is dispensable for overhang protection. Mol Cell Biol 2006; 26: 6971–6982.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Swiggers SJ, Kuijpers MA, de Cort MJ, Beverloo HB, Zijlmans JM . Critically short telomeres in acute myeloid leukemia with loss or gain of parts of chromosomes. Genes Chromosomes Cancer 2006; 45: 247–256.

    Article  CAS  PubMed  Google Scholar 

  52. Ohyashiki JH, Iwama H, Yahata N, Ando K, Hayashi S, Shay JW et al. Telomere stability is frequently impaired in high-risk groups of patients with myelodysplastic syndromes. Clin Cancer Res 1999; 5: 1155–1160.

    CAS  PubMed  Google Scholar 

  53. Gurkan E, Tanriverdi K, Baslamisli F . Telomerase activity in myelodysplastic syndromes. Leuk Res 2005; 29: 1131–1139.

    Article  PubMed  CAS  Google Scholar 

  54. Ohyashiki K, Shay JW, Ohyashiki JH . Lack of mutations of the human telomerase RNA gene (hTERC) in myelodysplastic syndrome. Haematologica 2005; 90: 691.

    PubMed  Google Scholar 

  55. Raghavan M, Lillington DM, Skoulakis S, Debernardi S, Chaplin T, Foot NJ et al. Genome-wide single nucleotide polymorphism analysis reveals frequent partial uniparental disomy due to somatic recombination in acute myeloid leukemias. Cancer Res 2005; 65: 375–378.

    CAS  PubMed  Google Scholar 

  56. Greenberg P, Cox C, LeBeau MM, Fenaux P, Morel P, Sanz G et al. International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood 1997; 89: 2079–2088.

    Article  CAS  PubMed  Google Scholar 

  57. Sole F, Luno E, Sanzo C, Espinet B, Sanz GF, Cervera J et al. Identification of novel cytogenetic markers with prognostic significance in a series of 968 patients with primary myelodysplastic syndromes. Haematologica 2005; 90: 1168–1178.

    CAS  PubMed  Google Scholar 

  58. List A, Dewald G, Bennett J, Giagounidis A, Raza A, Feldman E et al. Lenalidomide in the myelodysplastic syndrome with chromosome 5q deletion. N Engl J Med 2006; 355: 1456–1465.

    Article  CAS  PubMed  Google Scholar 

  59. Nimer SD . Clinical management of myelodysplastic syndromes with interstitial deletion of chromosome 5q. J Clin Oncol 2006; 24: 2576–2582.

    Article  CAS  PubMed  Google Scholar 

  60. Giagounidis AA, Germing U, Aul C . Biological and prognostic significance of chromosome 5q deletions in myeloid malignancies. Clin Cancer Res 2006; 12: 5–10.

    Article  CAS  PubMed  Google Scholar 

  61. Giagounidis AA, Germing U, Strupp C, Hildebrandt B, Heinsch M, Aul C . Prognosis of patients with del(5q) MDS and complex karyotype and the possible role of lenalidomide in this patient subgroup. Ann Hematol 2005; 84: 569–571.

    Article  CAS  PubMed  Google Scholar 

  62. Fenaux P . Chromosome and molecular abnormalities in myelodysplastic syndromes. Int J Hematol 2001; 73: 429–437.

    Article  CAS  PubMed  Google Scholar 

  63. Morel P, Hebbar M, Lai JL, Duhamel A, Preudhomme C, Wattel E et al. Cytogenetic analysis has strong independent prognostic value in de novo myelodysplastic syndromes and can be incorporated in a new scoring system: a report on 408 cases. Leukemia 1993; 7: 1315–1323.

    CAS  PubMed  Google Scholar 

  64. Michalova K, Musilova J, Zemanova Z . Cytogenetic abnormalities in 532 patients with myeloid leukemias and myelodyplastic syndrome. The Czechoslovak MDS Cooperative Group 74. Czech Med 1990; 13: 133–144.

    CAS  PubMed  Google Scholar 

  65. Kadam P, Umerani A, Srivastava A, Masterson M, Lampkin B, Raza A . Combination of classical and interphase cytogenetics to investigate the biology of myeloid disorders: detection of masked monosomy 7 in AML. Leuk Res 1993; 17: 365–374.

    Article  CAS  PubMed  Google Scholar 

  66. Rauch A, Ruschendorf F, Huang J, Trautmann U, Becker C, Thiel C et al. Molecular karyotyping using an SNP array for genomewide genotyping. J Med Genet 2004; 41: 916–922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Beyer V, Castagne C, Muhlematter D, Parlier V, Gmur J, Hess U et al. Systematic screening at diagnosis of -5/del(5)(q31), -7, or chromosome 8 aneuploidy by interphase fluorescence in situ hybridization in 110 acute myelocytic leukemia and high-risk myelodysplastic syndrome patients: concordances and discrepancies with conventional cytogenetics. Cancer Genet Cytogenet 2004; 152: 29–41.

    Article  CAS  PubMed  Google Scholar 

  68. Romeo M, Chauffaille ML, Silva MR, Bahia DM, Kerbauy J . Comparison of cytogenetics with FISH in 40 myelodysplastic syndrome patients. Leuk Res 2002; 26: 993–996.

    Article  CAS  PubMed  Google Scholar 

  69. Kearns WG, Sutton J, Maciejewski JP, Young NS, Liu JM . Genomic instability in bone marrow failure syndromes. Am J Pathol 2004; 3: 220–224.

    Google Scholar 

  70. Bignell GR, Huang J, Greshock J, Watt S, Butler A, West S et al. High-resolution analysis of DNA copy number using oligonucleotide microarrays. Genome Res 2004; 14: 287–295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Slater HR, Bailey DK, Ren H, Cao M, Bell K, Nasioulas S et al. High-resolution identification of chromosomal abnormalities using oligonucleotide arrays containing 116,204 SNPs. Am J Hum Genet 2005; 77: 709–726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wong KK, Tsang YT, Shen J, Cheng RS, Chang YM, Man TK et al. Allelic imbalance analysis by high-density single-nucleotide polymorphic allele (SNP) array with whole genome amplified DNA. Nucleic Acids Res 2004; 32: e69.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Zhao X, Li C, Paez JG, Chin K, Janne PA, Chen TH et al. An integrated view of copy number and allelic alterations in the cancer genome using single nucleotide polymorphism arrays. Cancer Res 2004; 64: 3060–3071.

    Article  CAS  PubMed  Google Scholar 

  74. Nowak NJ, Gaile D, Conroy JM, McQuaid D, Cowell J, Carter R et al. Genome-wide aberrations in pancreatic adenocarcinoma. Cancer Genet Cytogenet 2005; 161: 36–50.

    Article  CAS  PubMed  Google Scholar 

  75. Gaasenbeek M, Howarth K, Rowan AJ, Gorman PA, Jones A, Chaplin T et al. Combined array-comparative genomic hybridization and single-nucleotide polymorphism-loss of heterozygosity analysis reveals complex changes and multiple forms of chromosomal instability in colorectal cancers. Cancer Res 2006; 66: 3471–3479.

    Article  CAS  PubMed  Google Scholar 

  76. Shelley HE, Nyante SJ, Yi CY, Moore D, Devries S, Korkola JE et al. Clonality of lobular carcinoma in situ and synchronous invasive lobular carcinoma. Cancer 2004; 100: 2562–2572.

    Article  Google Scholar 

  77. Zhou X, Mok SC, Chen Z, Li Y, Wong DT . Concurrent analysis of loss of heterozygosity (LOH) and copy number abnormality (CNA) for oral premalignancy progression using the Affymetrix 10 K SNP mapping array. Hum Genet 2004; 115: 327–330.

    Article  CAS  PubMed  Google Scholar 

  78. Janne PA, Li C, Zhao X, Girard L, Chen TH, Minna J et al. High-resolution single-nucleotide polymorphism array and clustering analysis of loss of heterozygosity in human lung cancer cell lines. Oncogene 2004; 23: 2716–2726.

    Article  PubMed  CAS  Google Scholar 

  79. Koed K, Wiuf C, Christensen LL, Wikman FP, Zieger K, Moller K et al. High-density single nucleotide polymorphism array defines novel stage and location-dependent allelic imbalances in human bladder tumors. Cancer Res 2005; 65: 34–45.

    CAS  PubMed  Google Scholar 

  80. Huang J, Wei W, Zhang J, Liu G, Bignell GR, Stratton MR et al. Whole genome DNA copy number changes identified by high density oligonucleotide arrays. Hum Genomics 2004; 1: 287–299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Irving JA, Bloodworth L, Bown NP, Case MC, Hogarth LA, Hall AG . Loss of heterozygosity in childhood acute lymphoblastic leukemia detected by genome-wide microarray single nucleotide polymorphism analysis. Cancer Res 2005; 65: 3053–3058.

    Article  CAS  PubMed  Google Scholar 

  82. Stephens K, Weaver M, Leppig KA, Maruyama K, Emanuel PD, Le Beau MM et al. Interstitial uniparental isodisomy at clustered breakpoint intervals is a frequent mechanism of NF1 inactivation in myeloid malignancies. Blood 2006; 108: 1684–1689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Midorikawa Y, Yamamoto S, Ishikawa S, Kamimura N, Igarashi H, Sugimura H et al. Molecular karyotyping of human hepatocellular carcinoma using single-nucleotide polymorphism arrays. Oncogene 2006; 25: 5581–5590.

    Article  CAS  PubMed  Google Scholar 

  84. Appelbaum FR, Barrall J, Storb R, Ramberg R, Doney K, Sale GE et al. Clonal cytogenetic abnormalities in patients with otherwise typical aplastic anemia. Exp Hematol 1987; 15: 1134–1139.

    CAS  PubMed  Google Scholar 

  85. de Planque MM, Kluin-Nelemans HC, van Krieken HJ, Kluin PM, Brand A, Beverstock GC et al. Evolution of acquired severe aplastic anaemia to myelodysplasia and subsequent leukaemia in adults. Br J Haematol 1988; 70: 55–62.

    Article  CAS  PubMed  Google Scholar 

  86. de Planque MM, Bacigalupo A, Wursch A, Hows JM, Devergie A, Frickhofen N et al. Long-term follow-up of severe aplastic anaemia patients treated with antithymocyte globulin. Severe Aplastic Anaemia Working Party of the European Cooperative Group for Bone Marrow Transplantation (EBMT). Br J Haematol 1989; 73: 121–126.

    Article  CAS  PubMed  Google Scholar 

  87. Fuhrer M, Burdach S, Ebell W, Gadner H, Haas R, Harbott J et al. Relapse and clonal disease in children with aplastic anemia (AA) after immunosuppressive therapy (IST): the SAA 94 experience. German/Austrian Pediatric Aplastic Anemia Working Group. Klin Padiatr 1998; 210: 173–179.

    Article  CAS  PubMed  Google Scholar 

  88. Kaito K, Kobayashi M, Katayama T, Masuoka H, Shimada T, Nishiwaki K et al. Long-term administration of G-CSF for aplastic anaemia is closely related to the early evolution of monosomy 7 MDS in adults. Br J Haematol 1998; 103: 297–303.

    Article  CAS  PubMed  Google Scholar 

  89. Kojima S, Hibi S, Kosaka Y, Yamamoto M, Tsuchida M, Mugishima H et al. Immunosuppressive therapy using antithymocyte globulin, cyclosporine, and danazol with or without human granulocyte colony-stimulating factor in children with acquired aplastic anemia. Blood 2000; 96: 2049–2054.

    Article  CAS  PubMed  Google Scholar 

  90. Mikhailova N, Sessarego M, Fugazza G, Caimo A, De Filippi S, Van Lint MT et al. Cytogenetic abnormalities in patients with severe aplastic anemia. Haematologica 1996; 81: 418–422.

    CAS  PubMed  Google Scholar 

  91. Rosenfeld S, Follmann D, Nunez O, Young NS . Antithymocyte globulin and cyclosporine for severe aplastic anemia: association between hematologic response and long-term outcome. JAMA 2003; 289: 1130–1135.

    Article  CAS  PubMed  Google Scholar 

  92. Suzukawa K, Parganas E, Gajjar A, Abe T, Takahashi S, Tani K et al. Identification of a breakpoint cluster region 3′ of the ribophorin I gene at 3q21 associated with the transcriptional activation of the EVI1 gene in acute myelogenous leukemias with inv(3)(q21q26). Blood 1994; 84: 2681–2688.

    Article  CAS  PubMed  Google Scholar 

  93. Rabinowitz AP . Paracentric inversion of chromosome 3 (q21q26) in a patient with chronic myelomonocytic leukemia and a normal platelet count. Cancer Genet Cytogenet 1994; 75: 147–149.

    Article  CAS  PubMed  Google Scholar 

  94. Yoneda-Kato N, Look AT, Kirstein MN, Valentine MB, Raimondi SC, Cohen KJ et al. The t(3;5)(q25.1;q34) of myelodysplastic syndrome and acute myeloid leukemia produces a novel fusion gene, NPM-MLF1. Oncogene 1996; 12: 265–275.

    CAS  PubMed  Google Scholar 

  95. Baxter EJ, Kulkarni S, Vizmanos JL, Jaju R, Martinelli G, Testoni N et al. Novel translocations that disrupt the platelet-derived growth factor receptor beta (PDGFRB) gene in BCR-ABL-negative chronic myeloproliferative disorders. Br J Haematol 2003; 120: 251–256.

    Article  CAS  PubMed  Google Scholar 

  96. Magnusson MK, Meade KE, Brown KE, Arthur DC, Krueger LA, Barrett AJ et al. Rabaptin-5 is a novel fusion partner to platelet-derived growth factor beta receptor in chronic myelomonocytic leukemia. Blood 2001; 98: 2518–2525.

    Article  CAS  PubMed  Google Scholar 

  97. Wheadon H, Welham MJ . The coupling of TEL/PDGFbetaR to distinct functional responses is modulated by the presence of cytokine: involvement of mitogen-activated protein kinases. Blood 2003; 102: 1480–1489.

    Article  CAS  PubMed  Google Scholar 

  98. Liu S, Li C, Bo L, Dai Y, Xiao Z, Wang J . AML1/RUNX1 fusion gene and t(5;21)(q13;q22) in a case of chronic myelomonocytic leukemia with progressive thrombocytopenia and monocytosis. Cancer Genet Cytogenet 2004; 152: 172–174.

    Article  CAS  PubMed  Google Scholar 

  99. Bloomfield CD, Archer KJ, Mrozek K, Lillington DM, Kaneko Y, Head DR et al. 11q23 balanced chromosome aberrations in treatment-related myelodysplastic syndromes and acute leukemia: report from an international workshop. Genes Chromosomes Cancer 2002; 33: 362–378.

    Article  PubMed  Google Scholar 

  100. Mauritzson N, Albin M, Rylander L, Billstrom R, Ahlgren T, Mikoczy Z et al. Pooled analysis of clinical and cytogenetic features in treatment-related and de novo adult acute myeloid leukemia and myelodysplastic syndromes based on a consecutive series of 761 patients analyzed 1976–1993 and on 5098 unselected cases reported in the literature 1974–2001. Leukemia 2002; 16: 2366–2378.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J P Maciejewski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tiu, R., Gondek, L., O'Keefe, C. et al. Clonality of the stem cell compartment during evolution of myelodysplastic syndromes and other bone marrow failure syndromes. Leukemia 21, 1648–1657 (2007). https://doi.org/10.1038/sj.leu.2404757

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404757

Keywords

This article is cited by

Search

Quick links