Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chronic Lymphocytic Leukemia

Telomere length of cord blood-derived CD34+ progenitors predicts erythroid proliferative potential

Abstract

Excessive telomere shortening has been demonstrated in inherited and acquired blood disorders, including aplastic anemia and myelodysplastic syndromes. It is possible that replicative exhaustion, owing to critical telomere shortening in hematopoietic progenitor cells (HPCs), contributes to the development of cytopenias in these disorders. However to date, a direct link between the telomere length (TL) of human HPCs and their proliferative potential has not been demonstrated. In the present investigation, the TL and level of telomerase enzyme activity (TA) detected in cord blood (CB)-derived HPCs was found to predict erythroid expansion (P<0.01 and P=0.01 respectively). These results were corroborated by a correlation between proliferation of erythroid cells and telomere loss (P=0.01). In contrast, no correlations were found between initial TL, telomere loss or TA and the expansion of other myeloid lineage-committed cells. There was also no correlation between TL or TA and the number of clonogenic progenitors, including primitive progenitors derived from long-term culture. Our investigations revealed upregulation of telomerase to tumor cell levels in CD34− cells undergoing erythroid differentiation. Together, these results provide new insight into the regulation of TL and TA during myeloid cell expansion and demonstrate that TL is an important determinant of CB-derived erythroid cell proliferation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Yamada O, Oshimi K, Motoji T, Mizoguchi H . Telomeric DNA in normal and leukemic blood cells. J Clin Invest 1995; 95: 1117–1123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Leteurtre F, Li X, Guardiola P, Le Roux G, Sergere J-C, Richard P et al. Accelerated telomere shortening and telomerase activation in Fanconi's anemia. Br J Haematol 1999; 105: 883–893.

    Article  CAS  PubMed  Google Scholar 

  3. Ball SE, Gibson FM, Rizzo S, Tooze JA, Marsh JCW, Gordon-Smith EC . Progressive telomere shortening in aplastic anemia. Blood 1998; 91: 3582–3592.

    CAS  PubMed  Google Scholar 

  4. Ohyashiki JH, Ohyashiki K, Fujimura T, Kawakubo K, Shimamoto T, Iwabuchi A et al. Telomere shortening associated with disease evolution patterns in myelodysplastic syndromes. Cancer Res 1994; 54: 3557–3560.

    CAS  PubMed  Google Scholar 

  5. Engelhardt M, Mackenzie K, Drullinsky P, Silver RT, Moore MA . Telomerase activity and telomere length in acute and chronic leukemia, pre- and post-ex vivo culture. Cancer Res 2000; 60: 610–617.

    CAS  PubMed  Google Scholar 

  6. Boultwood J, Fidler C, Shepherd P, Watkins F, Snowball J, Haynes S et al. Telomere length shortening is associated with disease evolution in chronic myelogenous leukemia. Am J Hematol 1999; 61: 5–9.

    Article  CAS  PubMed  Google Scholar 

  7. de Lange T . T-loops and the origin of telomeres. Nat Rev Mol Cell Biol 2004; 5: 323–329.

    Article  CAS  PubMed  Google Scholar 

  8. Harley CB, Futcher AB, Greider CW . Telomeres shorten during ageing of human fibroblasts. Nature 1990; 345: 458–460.

    Article  CAS  PubMed  Google Scholar 

  9. Allsopp RC, Vaziri H, Patterson C, Goldstein S, Younglai EV, Futcher AB et al. Telomere length predicts replicative capacity of human fibroblasts. Proc Natl Acad Sci USA 1992; 89: 10114–10118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chang E, Harley CB . Telomere length and replicative aging in human vascular tissues. Proc Natl Acad Sci USA 1995; 92: 11190–11194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Allsop RC, Cheshier S, Weissman IL . Telomere shortening accompanies increased cell cycle activity during serial transplantation of hematopoietic stem cells. J Exp Med 2001; 193: 917–924.

    Article  Google Scholar 

  12. Allsopp RC, Morin GB, DePinho R, Harley CB, Weissman IL . Telomerase is required to slow telomere shortening and extend replicative lifespan of HSCs during serial transplantation. Blood 2003; 102: 517–520.

    Article  CAS  PubMed  Google Scholar 

  13. Chen J, Astle CM, Harrison DE . Development and aging of primitive hematopoietic stem cells in BALB/cBy mice. Exp Hematol 1999; 27: 928–935.

    Article  CAS  PubMed  Google Scholar 

  14. Landsorp PM, Dragowska W, Mayani H . Ontogeny-related changes in the proliferative potential of human hematopoietic cells. J Exp Med 1993; 178: 787–791.

    Article  Google Scholar 

  15. Marley SB, Lewis JL, Davidson RJ, Roberts IAG, Dokal I, Goldman JM . Evidence for a continous decline in haematopoietic cell function from birth: application to evaluating bone marrow failure in children. Br J Haematol 1999; 106: 162–166.

    Article  CAS  PubMed  Google Scholar 

  16. Hastie ND, Dempster M, Dunlop MG, Thompson AM, Green DK, Allshire RC . Telomere reduction in human colorectal carcinoma and with ageing. Nature 1990; 346: 866–868.

    Article  CAS  PubMed  Google Scholar 

  17. Engelhardt M, Kumar R, Albanell J, Pettengell R, Han W, Moore MAS . Telomerase regulation, cell cycle, and telomere stability in primitive hematopoietic cells. Blood 1997; 90: 182–193.

    CAS  PubMed  Google Scholar 

  18. Frenck Jr RW, Blackburn EH, Shannon KM . The rate of telomere sequence loss in human leukocytes varies with age. Proc Natl Acad Sci USA 1998; 95: 5607–5610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Iwama H, Ohyashiki K, Ohyashiki JH, Hayashi S, Yahata N, Ando K et al. Telomeric length and telomerase activity vary with age in peripheral blood cells obtained from normal individuals. Hum Genet 1998; 102: 397–402.

    Article  CAS  PubMed  Google Scholar 

  20. Vaziri H, Dragowska W, Allsop RC, Thomas TE, Harley CB, Landsorp PM . Evidence for a mitotic clock in human hematopoietic stem cells: loss of telomeric DNA with age. Proc Natl Acad Sci USA 1994; 91: 9857–9860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rufer N, Brummendorf TH, Kolvraa S, Bischoff C, Christensen K, Wadsworth L et al. Telomere fluorescence measurements in granulocytes and T lymphocyte subsets point to a high turnover of hematopoietic stem cells and memory T cells in early childhood. J Exp Med 1999; 190: 157–167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wynn RF, Cross MA, Hatton C, Will AM, Lashford LS, Dexter MT et al. Accelerated telomere shortening in young recipients of allogeneic bone-marrow transplants. Lancet 1998; 351: 178–181.

    Article  CAS  PubMed  Google Scholar 

  23. Engelhardt M, Ozkaynak MF, Drullinsky P, Sandoval C, Tugal O, Jayabose S et al. Telomerase activity and telomere length in pediatric patients with malignancies undergoing chemotherapy. Leukemia 1998; 12: 13–24.

    Article  CAS  PubMed  Google Scholar 

  24. Notaro R, Cimmino A, Tabarini D, Rotoli B, Luzzato L . In vivo telomere dynamics of human hematopoietic stem cells. Proc Natl Acad Sci USA 1997; 94: 13782–13785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ohyashiki JH, Iwama H, Yahata N, Ando K, Hayashi S, Shay JW et al. Telomere stability is frequently impaired in high-risk groups of patients with myelodysplastic syndromes. Clin Cancer Res 1999; 5: 1155–1160.

    CAS  PubMed  Google Scholar 

  26. Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, Ho PL et al. Specific association of human telomerase activity with immortal cells and cancer. Science 1994; 266: 2011–2015.

    Article  CAS  PubMed  Google Scholar 

  27. Broccoli D, Young JW, de Lange T . Telomerase activity in normal and malignant hematopoietic cells. Proc Natl Acad Sci USA 1995; 92: 9082–9086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Counter CM, Gupta J, Harley CB, Leber B, Bacchetti S . Telomerase activity in normal leukocytes and in hematologic malignancies. Blood 1995; 85: 2315–2320.

    CAS  PubMed  Google Scholar 

  29. Allsopp RC, Chang E, Kashefi-Aazam M, Rogaev EI, Piatyszek MA, Shay JW et al. Telomere shortening is associated with cell division in vitro and in vivo. Exp Cell Res 1995; 220: 194–200.

    Article  CAS  PubMed  Google Scholar 

  30. Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu CP, Morin GB et al. Extension of life-span by introduction of telomerase into normal human cells. Science 1998; 279: 349–352.

    Article  CAS  PubMed  Google Scholar 

  31. MacKenzie KL, Franco S, May C, Sadelain M, Moore MA . Mass cultured human fibroblasts overexpressing hTERT encounter a growth crisis following an extended period of proliferation. Exp Cell Res 2000; 259: 336–350.

    Article  CAS  PubMed  Google Scholar 

  32. Chen QM, Prowse KR, Tu VC, Purdom S, Linskens MH . Uncoupling the senescent phenotype from telomere shortening in hydrogen peroxide-treated fibroblasts. Exp Cell Res 2001; 265: 294–303.

    Article  CAS  PubMed  Google Scholar 

  33. Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW . Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 1997; 88: 593–602.

    Article  CAS  PubMed  Google Scholar 

  34. te Poele RH, Okorokov AL, Jardine L, Cummings J, Joel SP . DNA damage is able to induce senescence in tumor cells in vitro and in vivo. Cancer Res 2002; 62: 1876–1883.

    CAS  PubMed  Google Scholar 

  35. Michaloglou C, Vredeveld LC, Soengas MS, Denoyelle C, Kuilman T, van der Horst CM et al. BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 2005; 436: 720–724.

    Article  CAS  PubMed  Google Scholar 

  36. Zimmermann S, Glaser S, Ketteler R, Waller CF, Klingmuller U, Martens UM . Effects of telomerase modulation in human hematopoietic progenitor cells. Stem Cells 2004; 22: 741–749.

    Article  CAS  PubMed  Google Scholar 

  37. Wang JC, Warner JK, Erdmann N, Lansdorp PM, Harrington L, Dick JE . Dissociation of telomerase activity and telomere length maintenance in primitive human hematopoietic cells. Proc Natl Acad Sci USA 2005; 102: 14398–14403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Akimov SS, Ramezani A, Hawley TS, Hawley RG . Bypass of senescence, immortalization, and transformation of human hematopoietic progenitor cells. Stem Cells 2005; 23: 1423–1433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zeichner SL, Palumbo P, Feng Y, Xiao X, Gee D, Sleasman J et al. Rapid telomere shortening in children. Blood 1999; 93: 2824–2830.

    CAS  PubMed  Google Scholar 

  40. Slagboom PE, Droog PE, Boosma DI . Genetic determination of telomere size in humans: a twin study of three age groups. Am J Hum Genet 1994; 55: 866–869.

    Google Scholar 

  41. MacKenzie KL, Hackett NR, Crystal RG, Moore MA . Adenoviral vector-mediated gene transfer to primitive human hematopoietic progenitor cells: assessment of transduction and toxicity in long-term culture. Blood 2000; 96: 100–108.

    CAS  PubMed  Google Scholar 

  42. Taylor LM, James A, Schuller CE, Brce J, Lock RB, Mackenzie KL . Inactivation of p16INK4a, with retention of pRB and p53/p21cip1 function, in human MRC5 fibroblasts that overcome a telomere-independent crisis during immortalization. J Biol Chem 2004; 279: 43634–43645.

    Article  CAS  PubMed  Google Scholar 

  43. Gammaitoni L, Weisel KC, Gunetti M, Wu KD, Bruno S, Pinelli S et al. Elevated telomerase activity and minimal telomere loss in cord blood long-term cultures with extensive stem cell replication. Blood 2004; 103: 4440–4448.

    Article  CAS  PubMed  Google Scholar 

  44. Piacibello W, Sanavio F, Garetto L, Severino A, Bergandi D, Ferrario J et al. Extensive amplification and self-renewal of human primitive hematopoietic stem cells from cord blood. Blood 1997; 89: 2644–2653.

    CAS  PubMed  Google Scholar 

  45. Chiu CP, Dragowska W, Kim NW, Vaziri H, Yui J, Thomas TE et al. Differential expression of telomerase activity in hematopoietic progenitors from adult human bone marrow. Stem Cells 1996; 14: 239–248.

    Article  CAS  PubMed  Google Scholar 

  46. Hiyama K, Hirai Y, Kyoizumi S, Akiyama M, Hiyama E, Piatyszek MA et al. Activation of telomerase in human lymphocytes and hematopoietic progenitor cells. J Immunol 1995; 155: 3711–3715.

    CAS  PubMed  Google Scholar 

  47. Hofmann WK, Koeffler HP . Myelodysplastic syndrome. Annu Rev Med 2005; 56: 1–16.

    Article  CAS  PubMed  Google Scholar 

  48. Takahashi A, Ohtani N, Yamakoshi K, Iida S, Tahara H, Nakayama K et al. Mitogenic signalling and the p16(INK4a)-Rb pathway cooperate to enforce irreversible cellular senescence. Nat Cell Biol 2006; 8: 1291–1297.

    Article  CAS  PubMed  Google Scholar 

  49. Proulx C, Boyer L, Hurnanen DR, Lemieux R . Preferential ex vivo expansion of megakaryocytes from human cord blood CD34+-enriched cells in the presence of thrombopoietin and limiting amounts of stem cell factor and Flt-3 ligand. J Hematother Stem Cell Res 2003; 12: 179–188.

    Article  CAS  PubMed  Google Scholar 

  50. van den Oudenrijn S, von dem Borne AE, de Haas M . Differences in megakaryocyte expansion potential between CD34(+) stem cells derived from cord blood, peripheral blood, and bone marrow from adults and children. Exp Hematol 2000; 28: 1054–1061.

    Article  CAS  PubMed  Google Scholar 

  51. McKenna RW . Myelodysplasia and myeloproliferative disorders in children. Am J Clin Pathol 2004; 122 (Suppl): S58–S69.

    PubMed  Google Scholar 

  52. Smogorzewska A, de Lange T . Regulation of telomerase by telomeric proteins. Annu Rev Biochem 2004; 73: 177–208.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to the Australian Cord Blood Bank for providing umbilical cord blood and to Amgen for generous provision of cytokines. We thank Dr Leslie Ashton for statistical advice and Dr Richard Lock for reading this paper. Children's Cancer Institute Australia for Medical Research is affiliated with the University of New South Wales and Sydney Children's Hospital.

This work was funded by the Cancer Institute New South Wales and Cure Cancer Australia (formerly the Leo and Jenny Cancer and Leukaemia Foundation).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K L MacKenzie.

Additional information

Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schuller, C., Jankowski, K. & MacKenzie, K. Telomere length of cord blood-derived CD34+ progenitors predicts erythroid proliferative potential. Leukemia 21, 983–991 (2007). https://doi.org/10.1038/sj.leu.2404631

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404631

Keywords

This article is cited by

Search

Quick links