Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acute Leukemias

Acute lymphoblastic leukemia with t(4;11) in children 1 year and older: The ‘big sister’ of the infant disease?

Abstract

The t(4;11)-positive acute lymphoblastic leukemia (ALL) is a rare disease in children above the age of 1 year. We studied the clinical and biological characteristics in 32 consecutively diagnosed childhood cases (median age 10.0 years, range 1.0–17.1 years). Immunophenotyping revealed a pro-B and a pre-B stage in 24 and eight cases, respectively. IGH genes were rearranged in 84% of leukemias with a predominance of incomplete DJH joints. Whereas IGK-Kde and TCRD rearrangements were rare, TCRG rearrangements were present in 50% of cases and involved mainly Vγ11 or Vγ9 together with a Jγ1.3./2.3 gene segment, an unusual combination among t(4;11)-negative B-cell precursor ALL. Oligoclonality was found in about 30% as assessed by heterogeneous IGH and TCRG rearrangements. Our data are in line with transformation of a precursor cell at an early stage of B-cell development but retaining the potential to differentiate to the pre-B cell stage in vivo. Although a distinct difference between infant and older childhood cases with t(4;11) became evident, no age-related biological features were found within the childhood age group. In contrast to infants with t(4;11)-positive ALL, childhood cases had a relatively low cumulative incidence of relapse of 25% at 3.5 years with BFM-based high-risk protocols.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ayton PM, Cleary ML . Molecular mechanisms of leukemogenesis mediated by MLL fusion proteins. Oncogene 2001; 20: 5695–5707.

    Article  CAS  Google Scholar 

  2. Meyer C, Schneider B, Jakob S, Strehl S, Attarbaschi A, Schnittger S et al. The MLL recombinome of acute leukemias. Leukemia 2006; 20: 777–784.

    Article  CAS  Google Scholar 

  3. Mieke WJC, Jansen LC, Vincent HJ, van der V, Renate P-G, Martin S et al. Immunobiological diversity in infant acute lymphoblastic leukemia is related to the occurrence and type of MLL gene rearrangement. Leukemia (in press).

  4. Pui CH, Kane JR, Crist WM . Biology and treatment of infant leukemias. Leukemia 1995; 9: 762–769.

    CAS  Google Scholar 

  5. Pui CH, Evans WE . Treatment of acute lymphoblastic leukemia. N Engl J Med 2006; 354: 166–178.

    Article  CAS  Google Scholar 

  6. Cheok MH, Evans WE . Acute lymphoblastic leukaemia: a model for the pharmacogenomics of cancer therapy. Nat Rev Cancer 2006; 6: 117–129.

    Article  CAS  Google Scholar 

  7. Behm FG, Raimondi SC, Frestedt JL, Liu Q, Crist WM, Downing JR et al. Rearrangement of the MLL gene confers a poor prognosis in childhood acute lymphoblastic leukemia, regardless of presenting age. Blood 1996; 87: 2870–2877.

    CAS  Google Scholar 

  8. Pui CH, Gaynon PS, Boyett JM, Chessells JM, Baruchel A, Kamps W et al. Outcome of treatment in childhood acute lymphoblastic leukaemia with rearrangements of the 11q23 chromosomal region. Lancet 2002; 359: 1909–1915.

    Article  Google Scholar 

  9. Pui CH, Chessells JM, Camitta B, Baruchel A, Biondi A, Boyett JM et al. Clinical heterogeneity in childhood acute lymphoblastic leukemia with 11q23 rearrangements. Leukemia 2003; 17: 700–706.

    Article  CAS  Google Scholar 

  10. Biondi A, Cimino G, Pieters R, Pui CH . Biological and therapeutic aspects of infant leukemia. Blood 2000; 96: 24–33.

    CAS  Google Scholar 

  11. Reichel M, Gillert E, Angermuller S, Hensel JP, Heidel F, Lode M et al. Biased distribution of chromosomal breakpoints involving the MLL gene in infants versus children and adults with t(4;11) ALL. Oncogene 2001; 20: 2900–2907.

    Article  CAS  Google Scholar 

  12. Pongers-Willemse MJ, Seriu T, Stolz F, d'Aniello E, Gameiro P, Pisa P et al. Primers and protocols for standardized detection of minimal residual disease in acute lymphoblastic leukemia using immunoglobulin and T cell receptor gene rearrangements and TAL1 deletions as PCR targets: report of the BIOMED-1 CONCERTED ACTION: investigation of minimal residual disease in acute leukemia. Leukemia 1999; 13: 110–118.

    Article  CAS  Google Scholar 

  13. Szczepanski T, Flohr T, van der Velden VH, Bartram CR, van Dongen JJ . Molecular monitoring of residual disease using antigen receptor genes in childhood acute lymphoblastic leukaemia. Best Pract Res Clin Haematol 2002; 15: 37–57.

    Article  CAS  Google Scholar 

  14. Alt FW, Oltz EM, Young F, Gorman J, Taccioli G, Chen J . VDJ recombination. Immunol Today 1992; 13: 306–314.

    Article  CAS  Google Scholar 

  15. van Zelm MC, van der Burg M, de Ridder D, Barendregt BH, de Haas EF, Reinders MJ et al. Ig gene rearrangement steps are initiated in early human precursor B cell subsets and correlate with specific transcription factor expression. J Immunol 2005; 175: 5912–5922.

    Article  CAS  Google Scholar 

  16. van der Burg M, Barendregt BH, Szczepanski T, van Wering ER, Langerak AW, van Dongen JJ . Immunoglobulin light chain gene rearrangements display hierarchy in absence of selection for functionality in precursor-B-ALL. Leukemia 2002; 16: 1448–1453.

    Article  CAS  Google Scholar 

  17. Hubner S, Cazzaniga G, Flohr T, van der Velden VH, Konrad M, Potschger U et al. High incidence and unique features of antigen receptor gene rearrangements in TEL-AML1-positive leukemias. Leukemia 2004; 18: 84–91.

    Article  CAS  Google Scholar 

  18. Brumpt C, Delabesse E, Beldjord K, Davi F, Cayuela JM, Millien C et al. The incidence of clonal T-cell receptor rearrangements in B-cell precursor acute lymphoblastic leukemia varies with age and genotype. Blood 2000; 96: 2254–2261.

    CAS  Google Scholar 

  19. van der Velden VH, Szczepanski T, Wijkhuijs JM, Hart PG, Hoogeveen PG, Hop WC et al. Age-related patterns of immunoglobulin and T-cell receptor gene rearrangements in precursor-B-ALL: implications for detection of minimal residual disease. Leukemia 2003; 17: 1834–1844.

    Article  CAS  Google Scholar 

  20. Schrappe M . Evolution of BFM trials for childhood ALL. Ann Hematol 2004; 83 (Suppl 1): S121–S123.

    Google Scholar 

  21. van der Does-van den Berg A, Bartram CR, Basso G, Benoit YC, Biondi A, Debatin KM et al. Minimal requirements for the diagnosis, classification, and evaluation of the treatment of childhood acute lymphoblastic leukemia (ALL) in the ‘BFM Family’ Cooperative Group. Med Pediatr Oncol 1992; 20: 497–505.

    Article  CAS  Google Scholar 

  22. Gabert J, Beillard E, van der Velden VH, Bi W, Grimwade D, Pallisgaard N et al. Standardization and quality control studies of ‘real-time’ quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia – a Europe Against Cancer program. Leukemia 2003; 17: 2318–2357.

    Article  CAS  Google Scholar 

  23. van der Burg M, Poulsen TS, Hunger SP, Beverloo HB, Smit EM, Vang-Nielsen K et al. Split-signal FISH for detection of chromosome aberrations in acute lymphoblastic leukemia. Leukemia 2004; 18: 895–908.

    Article  CAS  Google Scholar 

  24. Schrappe M, Reiter A, Ludwig WD, Harbott J, Zimmermann M, Hiddemann W et al. Improved outcome in childhood acute lymphoblastic leukemia despite reduced use of anthracyclines and cranial radiotherapy: results of trial ALL-BFM 90. German-Austrian-Swiss ALL-BFM Study Group Blood 2000; 95: 3310–3322.

    CAS  Google Scholar 

  25. Steenbergen EJ, Verhagen OJ, van Leeuwen EF, Behrendt H, Merle PA, Wester MR et al. B precursor acute lymphoblastic leukemia third complementarity-determining regions predominantly represent an unbiased recombination repertoire: leukemic transformation frequently occurs in fetal life. Eur J Immunol 1994; 24: 900–908.

    Article  CAS  Google Scholar 

  26. Wiemels JL, Leonard BC, Wang Y, Segal MR, Hunger SP, Smith MT et al. Site-specific translocation and evidence of postnatal origin of the t(1;19) E2A-PBX1 fusion in childhood acute lymphoblastic leukemia. Proc Natl Acad Sci USA 2002; 99: 15101–15106.

    Article  CAS  Google Scholar 

  27. Steenbergen EJ, Verhagen OJ, van den Berg H, van Leeuwen EF, Behrendt H, Slater RR et al. Rearrangement status of the malignant cell determines type of secondary IgH rearrangement (V-replacement or V to DJ joining) in childhood B precursor acute lymphoblastic leukemia. Leukemia 1997; 11: 1258–1265.

    Article  CAS  Google Scholar 

  28. Hagemeijer A, van Dongen JJ, Slater RM, van't Veer MB, Behrendt H, Hahlen K et al. Characterization of the blast cells in acute leukemia with translocation (4;11): report of eight additional cases and of one case with a variant translocation. Leukemia 1987; 1: 24–31.

    CAS  Google Scholar 

  29. Moneypenny CG, Shao J, Song Y, Gallagher EP . MLL rearrangements are induced by low doses of etoposide in human fetal hematopoietic stem cells. Carcinogenesis 2006; 27: 874–881.

    Article  CAS  Google Scholar 

  30. Eguchi M, Eguchi-Ishimae M, Knight D, Kearney L, Slany R, Greaves M . MLL chimeric protein activation renders cells vulnerable to chromosomal damage: An explanation for the very short latency of infant leukemia. Genes Chromosomes Cancer 2006; 45: 754–760.

    Article  CAS  Google Scholar 

  31. Fasching K, Panzer S, Haas OA, Borkhardt A, Marschalek R, Griesinger F et al. Presence of N regions in the clonotypic DJ rearrangements of the immunoglobulin heavy-chain genes indicates an exquisitely short latency in t(4;11)-positive infant acute lymphoblastic leukemia. Blood 2001; 98: 2272–2274.

    Article  CAS  Google Scholar 

  32. Bertrand FE, Vogtenhuber C, Shah N, LeBien TW . Pro-B-cell to pre-B-cell development in B-lineage acute lymphoblastic leukemia expressing the MLL/AF4 fusion protein. Blood 2001; 98: 3398–3405.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank OA Haas, A Leszl, T Lion, G Fazio and J Harbott for cytogenetic, RT-PCR and FISH data, Uli Pötschger for statistical analysis and Marion Zavadil for proofreading. This work was supported in part by the Österreichische Kinderkrebsforschung and private donations to the CCRI, by Fondazione Tettamanti, AIRC, Fondazione Città della Speranza and Fondazione Cariplo, Deutsche Krebshilfe (Grant 50-2698-Schr1) and German BMBF Competence Network Pediatric Oncology/Hematology (Grant 01 Gi 9963/2). It reflects a collaboration of members of the Biology Group of the International Berlin-Frankfurt-Münster (I-BFM) Group.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E R Panzer-Grümayer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mann, G., Cazzaniga, G., van der Velden, V. et al. Acute lymphoblastic leukemia with t(4;11) in children 1 year and older: The ‘big sister’ of the infant disease?. Leukemia 21, 642–646 (2007). https://doi.org/10.1038/sj.leu.2404577

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404577

Keywords

This article is cited by

Search

Quick links