Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Myelodyspasias

Increased frequencies of CD4+CD25high Tregs correlate with disease relapse after allogeneic stem cell transplantation for chronic myeloid leukemia

Abstract

The therapeutic efficacy of allogeneic hemopoietic stem cell transplantation (SCT) for chronic myeloid leukemia (CML) largely relies on the graft-versus-leukemia (GvL) effect exerted by donor T cells. CD4+CD25high regulatory T cells (Tregs) have been shown to downregulate antitumor responses but their role on GvL has not been evaluated. We performed a cross-sectional study in which we enumerated and characterized CD4+CD25high Tregs in the peripheral blood of CML patients undergoing allogeneic SCT. We documented higher frequencies of Tregs in patients after transplant as compared to normal controls and newly diagnosed patients. The increment was particularly evident in patients who had received their SCT 18 months before. In vitro functional studies demonstrated that the Tregs purified from SCT patients exhibited a more potent suppressive activity than Tregs isolated from healthy volunteers. Patients in whom Tregs numbers were higher than controls more than 18 months after SCT showed evidence of disease relapse. Although the increment in Tregs might have an advantageous effect on graft rejection in the early phase post-transplant, our data suggest that Tregs exert an inhibitory effect on GvL.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M . Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 1995; 155: 1151–1164.

    CAS  PubMed  Google Scholar 

  2. Maloy KJ, Powrie F . Regulatory T cells in the control of immune pathology. Nat Immunol 2001; 2: 816–822.

    Article  CAS  PubMed  Google Scholar 

  3. Walsh PT, Taylor DK, Turka LA . Tregs and transplantation tolerance. J Clin Invest 2004; 114: 1398–1403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fehervari Z, Sakaguchi S . CD4+ Tregs and immune control. J Clin Invest 2004; 114: 1209–1217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Shimizu J, Yamazaki S, Takahashi T, Ishida Y, Sakaguchi S . Stimulation of CD25(+)CD4(+) regulatory T cells through GITR breaks immunological self-tolerance. Nat Immunol 2002; 3: 135–142.

    Article  CAS  PubMed  Google Scholar 

  6. Sakaguchi S, Sakaguchi N . Regulatory T cells in immunologic self-tolerance and autoimmune disease. Int Rev Immunol 2005; 24: 211–226.

    Article  CAS  PubMed  Google Scholar 

  7. Baecher-Allan C, Brown JA, Freeman GJ, Hafler DA . CD4+CD25high regulatory cells in human peripheral blood. J Immunol 2001; 167: 1245–1253.

    Article  CAS  PubMed  Google Scholar 

  8. Cesana GC, DeRaffele G, Cohen S, Moroziewicz D, Mitcham J, Stoutenburg J et al. Characterization of CD4+CD25+ regulatory T cells in patients treated with high-dose interleukin-2 for metastatic melanoma or renal cell carcinoma. J Clin Oncol 2006; 24: 1169–1177.

    Article  CAS  PubMed  Google Scholar 

  9. Wing K, Ekmark A, Karlsson H, Rudin A, Suri-Payer E . Characterization of human CD25+ CD4+ T cells in thymus, cord and adult blood. Immunology 2002; 106: 190–199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shimizu J, Yamazaki S, Sakaguchi S . Induction of tumor immunity by removing CD25+CD4+ T cells: a common basis between tumor immunity and autoimmunity. J Immunol 1999; 163: 5211–5218.

    CAS  PubMed  Google Scholar 

  11. Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 2004; 10: 942–949.

    Article  CAS  PubMed  Google Scholar 

  12. Liyanage UK, Moore TT, Joo HG, Tanaka Y, Herrmann V, Doherty G et al. Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J Immunol 2002; 169: 2756–2761.

    Article  CAS  PubMed  Google Scholar 

  13. Wolf AM, Wolf D, Steurer M, Gastl G, Gunsilius E, Grubeck-Loebenstein B . Increase of regulatory T cells in the peripheral blood of cancer patients. Clin Cancer Res 2003; 9: 606–612.

    PubMed  Google Scholar 

  14. Woo EY, Chu CS, Goletz TJ, Schlienger K, Yeh H, Coukos G et al. Regulatory CD4(+)CD25(+) T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer. Cancer Res 2001; 61: 4766–4772.

    CAS  PubMed  Google Scholar 

  15. Ichihara F, Kono K, Takahashi A, Kawaida H, Sugai H, Fujii H . Increased populations of regulatory T cells in peripheral blood and tumor-infiltrating lymphocytes in patients with gastric and esophageal cancers. Clin Cancer Res 2003; 9: 4404–4408.

    PubMed  Google Scholar 

  16. Sasada T, Kimura M, Yoshida Y, Kanai M, Takabayashi A . CD4+CD25+ regulatory T cells in patients with gastrointestinal malignancies: possible involvement of regulatory T cells in disease progression. Cancer 2003; 98: 1089–1099.

    Article  PubMed  Google Scholar 

  17. Marshall NA, Christie LE, Munro LR, Culligan DJ, Johnston PW, Barker RN et al. Immunosuppressive regulatory T cells are abundant in the reactive lymphocytes of Hodgkin lymphoma. Blood 2004; 103: 1755–1762.

    Article  CAS  PubMed  Google Scholar 

  18. Beyer M, Kochanek M, Darabi K, Popov A, Jensen M, Endl E et al. Reduced frequencies and suppressive function of CD4+CD25hi regulatory T cells in patients with chronic lymphocytic leukemia after therapy with fludarabine. Blood 2005; 106: 2018–2025.

    Article  CAS  PubMed  Google Scholar 

  19. Beyer M, Kochanek M, Giese T, Endl E, Weihrauch MR, Knolle PA et al. In vivo peripheral expansion of naive CD4+CD25high FOXP3+ regulatory T cells in patients with multiple myeloma. Blood 2006; 107: 3940–3949.

    Article  CAS  PubMed  Google Scholar 

  20. Goldman JM, Gale RP, Horowitz MM, Biggs JC, Champlin RE, Gluckman E et al. Bone marrow transplantation for chronic myelogenous leukemia in chronic phase. Increased risk for relapse associated with T-cell depletion. Ann Intern Med 1988; 108: 806–814.

    Article  CAS  PubMed  Google Scholar 

  21. Edinger M, Hoffmann P, Ermann J, Drago K, Fathman CG, Strober S et al. CD4+CD25+ regulatory T cells preserve graft-versus-tumor activity while inhibiting graft-versus-host disease after bone marrow transplantation. Nat Med 2003; 9: 1144–1150.

    Article  CAS  PubMed  Google Scholar 

  22. Trenado A, Charlotte F, Fisson S, Yagello M, Klatzmann D, Salomon BL et al. Recipient-type specific CD4+CD25+ regulatory T cells favor immune reconstitution and control graft-versus-host disease while maintaining graft-versus-leukemia. J Clin Invest 2003; 112: 1688–1696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cohen JL, Trenado A, Vasey D, Klatzmann D, Salomon BL . CD4(+)CD25(+) immunoregulatory T Cells: new therapeutics for graft-versus-host disease. J Exp Med 2002; 196: 401–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Joffre O, Gorsse N, Romagnoli P, Hudrisier D, van Meerwijk JP . Induction of antigen-specific tolerance to bone marrow allografts with CD4+CD25+ T lymphocytes. Blood 2004; 103: 4216–4221.

    Article  CAS  PubMed  Google Scholar 

  25. Dazzi F, Szydlo RM, Cross NC, Craddock C, Kaeda J, Kanfer E et al. Durability of responses following donor lymphocyte infusions for patients who relapse after allogeneic stem cell transplantation for chronic myeloid leukemia. Blood 2000; 96: 2712–2716.

    CAS  PubMed  Google Scholar 

  26. Glucksberg H, Storb R, Fefer A, Buckner CD, Neiman PE, Clift RA et al. Clinical manifestations of graft-versus-host disease in human recipients of marrow from HL-A-matched sibling donors. Transplantation 1974; 18: 295–304.

    Article  CAS  PubMed  Google Scholar 

  27. Shulman HM, Sullivan KM, Weiden PL, McDonald GB, Striker GE, Sale GE et al. Chronic graft-versus-host syndrome in man. A long-term clinicopathologic study of 20 Seattle patients. Am J Med 1980; 69: 204–217.

    Article  CAS  PubMed  Google Scholar 

  28. Marin D, Kaeda J, Szydlo R, Saunders S, Fleming A, Howard J et al. Monitoring patients in complete cytogenetic remission after treatment of CML in chronic phase with imatinib: patterns of residual leukaemia and prognostic factors for cytogenetic relapse. Leukemia 2005; 19: 507–512.

    Article  CAS  PubMed  Google Scholar 

  29. Lin F, van Rhee F, Goldman JM, Cross NC . Kinetics of increasing BCR-ABL transcript numbers in chronic myeloid leukemia patients who relapse after bone marrow transplantation. Blood 1996; 87: 4473–4478.

    CAS  PubMed  Google Scholar 

  30. Roncador G, Brown PJ, Maestre L, Hue S, Martinez-Torrecuadrada JL, Ling KL et al. Analysis of FOXP3 protein expression in human CD4+CD25+ regulatory T cells at the single-cell level. Eur J Immunol 2005; 35: 1681–1691.

    Article  CAS  PubMed  Google Scholar 

  31. Liu W, Putnam AL, Xu-Yu Z, Szot GL, Lee MR, Zhu S et al. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4(+) T reg cells. J Exp Med 2006; 203: 1701–1711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Seddiki N, Santner-Nanan B, Martinson J, Zaunders J, Sasson S, Landay A et al. Expression of interleukin (IL)-2 and IL-7 receptors discriminates between human regulatory and activated T cells. J Exp Med 2006; 203: 1693–1700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cox AL, Thompson SA, Jones JL, Robertson VH, Hale G, Waldmann H et al. Lymphocyte homeostasis following therapeutic lymphocyte depletion in multiple sclerosis. Eur J Immunol 2005; 35: 3332–3342.

    Article  CAS  PubMed  Google Scholar 

  34. Laylor R, Dewchand H, Simpson E, Dazzi F . Engraftment of allogeneic hematopoietic stem cells requires both inhibition of host-versus-graft responses and ‘space’ for homeostatic expansion. Transplantation 2005; 79: 1484–1491.

    Article  PubMed  Google Scholar 

  35. Davison GM, Novitzky N, Kline A, Thomas V, Abrahams L, Hale G et al. Immune reconstitution after allogeneic bone marrow transplantation depleted of T cells. Transplantation 2000; 69: 1341–1347.

    Article  CAS  PubMed  Google Scholar 

  36. Clark FJ, Gregg R, Piper K, Dunnion D, Freeman L, Griffiths M et al. Chronic graft-versus-host disease is associated with increased numbers of peripheral blood CD4+CD25high regulatory T cells. Blood 2004; 103: 2410–2416.

    Article  CAS  PubMed  Google Scholar 

  37. Barthlott T, Kassiotis G, Stockinger B . T cell regulation as a side effect of homeostasis and competition. J Exp Med 2003; 197: 451–460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Caramalho I, Lopes-Carvalho T, Ostler D, Zelenay S, Haury M, Demengeot J . Regulatory T cells selectively express toll-like receptors and are activated by lipopolysaccharide. J Exp Med 2003; 197: 403–411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Roux E, Helg C, Dumont-Girard F, Chapuis B, Jeannet M, Roosnek E . Analysis of T-cell repopulation after allogeneic bone marrow transplantation: significant differences between recipients of T-cell depleted and unmanipulated grafts. Blood 1996; 87: 3984–3992.

    CAS  PubMed  Google Scholar 

  40. Dumont-Girard F, Roux E, van Lier RA, Hale G, Helg C, Chapuis B et al. Reconstitution of the T-cell compartment after bone marrow transplantation: restoration of the repertoire by thymic emigrants. Blood 1998; 92: 4464–4471.

    CAS  PubMed  Google Scholar 

  41. Murakami M, Sakamoto A, Bender J, Kappler J, Marrack P . CD25+CD4+ T cells contribute to the control of memory CD8+ T cells. Proc Natl Acad Sci USA 2002; 99: 8832–8837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Meignin V, de Latour RP, Zuber J, Regnault A, Mounier N, Lemaitre F et al. Numbers of Foxp3-expressing CD4(+)CD25(high) T cells do not correlate with the establishment of long-term tolerance after allogeneic stem cell transplantation. Exp Hematol 2005; 33: 894–900.

    Article  CAS  PubMed  Google Scholar 

  43. Miura Y, Thoburn CJ, Bright EC, Phelps ML, Shin T, Matsui EC et al. Association of Foxp3 regulatory gene expression with graft-versus-host disease. Blood 2004; 104: 2187–2193.

    Article  CAS  PubMed  Google Scholar 

  44. Sanchez J, Casano J, Alvarez MA, Roman-Gomez J, Martin C, Martinez F et al. Kinetic of regulatory CD25high and activated CD134+ (OX40) T lymphocytes during acute and chronic graft-versus-host disease after allogeneic bone marrow transplantation. Br J Haematol 2004; 126: 697–703.

    Article  PubMed  Google Scholar 

  45. Zorn E, Kim HT, Lee SJ, Floyd BH, Litsa D, Arumugarajah S et al. Reduced frequency of FOXP3+ CD4+CD25+ regulatory T cells in patients with chronic graft-versus-host disease. Blood 2005; 106: 2903–2911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jones SC, Murphy GF, Korngold R . Post-hematopoietic cell transplantation control of graft-versus-host disease by donor CD425 T cells to allow an effective graft-versus-leukemia response. Biol Blood Marrow Transplant 2003; 9: 243–256.

    Article  PubMed  Google Scholar 

  47. Wysocki CA, Jiang Q, Panoskaltsis-Mortari A, Taylor PA, McKinnon KP, Su L et al. Critical role for CCR5 in the function of donor CD4+CD25+ regulatory T cells during acute graft-versus-host disease. Blood 2005; 106: 3300–3307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr Richard Syzdlo for statistical advice and critical reading of the manuscript. This work was supported by Leukaemia Research Fund (LRF) and Fredericus Stiftung Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F Dazzi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nadal, E., Garin, M., Kaeda, J. et al. Increased frequencies of CD4+CD25high Tregs correlate with disease relapse after allogeneic stem cell transplantation for chronic myeloid leukemia. Leukemia 21, 472–479 (2007). https://doi.org/10.1038/sj.leu.2404522

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404522

Keywords

This article is cited by

Search

Quick links