Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chronic Myeloproliferative Disorders

Epigenetic alterations complement mutation of JAK2 tyrosine kinase in patients with BCR/ABL-negative myeloproliferative disorders

Abstract

An acquired autoactivating mutation with a V617F amino-acid substitution in the JAK2 tyrosine kinase is frequently found in BCR/ABL-negative myeloproliferative disorders (MPD). Hypermethylation of CpG islands within gene promoter regions is associated with transcriptional inactivation and represents an important mechanism of gene silencing in the pathogenesis of hematopoietic malignancies. In this study, we determined the DNA methylation status of 13 cancer-related genes in the context of JAK2 mutations in 39 patients with MPD. Genes analyzed for hypermethylation were SOCS-1, SHP-1, E-cadherin, MGMT, TIMP-2, TIMP-3, p15, p16, p73, DAPK1, RASSF1A, RARβ2 and hMLH1. We found at least one hypermethylated gene in 15/39 MPD patient specimens, and in 6/39 samples aberrant methylation of the negative cytokine regulator SOCS-1 was present. The JAK2V617F mutation was found in 21/39 patients as determined by allele-specific polymerase chain reaction. Hypermethylation of SOCS-1 was observed in 3/21 patients with an autoactivating JAK2 mutation and in 3/18 patients with wild-type JAK2. Our results suggest that epigenetic inactivation of SOCS-1 may be a complementary mechanism to the JAK2V617F mutation in the pathogenesis of MPD that leads to dysregulation of JAK-STAT signal transduction and thus contributes to growth factor hypersensitivity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Reeder TL, Bailey RJ, Dewald GW, Tefferi A . Both B and T lymphocytes may be clonally involved in myelofibrosis with myeloid metaplasia. Blood 2003; 101: 1981–1983.

    Article  CAS  PubMed  Google Scholar 

  2. Jacobson RJ, Salo A, Fialkow PJ . Agnogenic myeloid metaplasia: a clonal proliferation of hematopoietic stem cells with secondary myelofibrosis. Blood 1978; 51: 189–194.

    CAS  PubMed  Google Scholar 

  3. Reilly JT . Cytogenetic and molecular genetic aspects of idiopathic myelofibrosis. Acta Haematol 2002; 108: 113–119.

    Article  CAS  PubMed  Google Scholar 

  4. Tefferi A, Mesa RA, Schroeder G, Hanson CA, Li CY, Dewald GW . Cytogenetic findings and their clinical relevance in myelofibrosis with myeloid metaplasia. Br J Haematol 2001; 113: 763–771.

    Article  CAS  PubMed  Google Scholar 

  5. Tefferi A, Dingli D, Li CY, Dewald GW . Prognostic diversity among cytogenetic abnormalities in myelofibrosis with myeloid metaplasia. Cancer 2005; 104: 1656–1660.

    Article  CAS  PubMed  Google Scholar 

  6. Prchal JF, Axelrad AA . Letter: bone-marrow responses in polycythemia vera. N Engl J Med 1974; 290: 1382.

    CAS  PubMed  Google Scholar 

  7. Mirza AM, Ezzat S, Axelrad AA . Insulin-like growth factor binding protein-1 is elevated in patients with polycythemia vera and stimulates erythroid burst formation in vitro. Blood 1997; 89: 1862–1869.

    CAS  PubMed  Google Scholar 

  8. Dai CH, Krantz SB, Green WF, Gilbert HS . Polycythaemia vera. III. Burst-forming units-erythroid (BFU-E) response to stem cell factor and c-kit receptor expression. Br J Haematol 1994; 86: 12–21.

    Article  CAS  PubMed  Google Scholar 

  9. Dai CH, Krantz SB, Koury ST, Kollar K . Polycythaemia vera. IV. Specific binding of stem cell factor to normal and polycythaemia vera highly purified erythroid progenitor cells. Br J Haematol 1994; 88: 497–505.

    Article  CAS  PubMed  Google Scholar 

  10. Baxter EJ, Scott LM, Campbell PJ, East C, Fourouclas N, Swanton S et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 2005; 365: 1054–1061.

    Article  CAS  PubMed  Google Scholar 

  11. James C, Ugo V, Le Couedic JP, Staerk J, Delhommeau F, Lacout C et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 2005; 434: 1144–1148.

    Article  CAS  PubMed  Google Scholar 

  12. Kralovics R, Passamonti F, Buser AS, Teo SS, Tiedt R, Passweg JR et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med 2005; 352: 1779–1790.

    Article  CAS  PubMed  Google Scholar 

  13. Valentino L, Pierre J . JAK/STAT signal transduction: regulators and implication in hematological malignancies. Biochem Pharmacol 2006; 71: 713–721.

    Article  CAS  PubMed  Google Scholar 

  14. Steelman LS, Pohnert SC, Shelton JG, Franklin RA, Bertrand FE, McCubrey JA . JAK/STAT, Raf/MEK/ERK, PI3K/Akt and BCR-ABL in cell cycle progression and leukemogenesis. Leukemia 2004; 18: 189–218.

    Article  CAS  PubMed  Google Scholar 

  15. Ingley E, Tilbrook PA, Klinken SP . New insights into the regulation of erythroid cells. IUBMB Life 2004; 56: 177–184.

    Article  CAS  PubMed  Google Scholar 

  16. Levine RL, Wadleigh M, Cools J, Ebert BL, Wernig G, Huntly BJ et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell 2005; 7: 387–397.

    Article  CAS  PubMed  Google Scholar 

  17. Tefferi A, Lasho TL, Gilliland G . JAK2 mutations in myeloproliferative disorders. N Engl J Med 2005; 353: 1416–1417; author reply 1416–1417.

    Article  CAS  PubMed  Google Scholar 

  18. Campbell PJ, Griesshammer M, Dohner K, Dohner H, Kusec R, Hasselbalch HC et al. V617F mutation in JAK2 is associated with poorer survival in idiopathic myelofibrosis. Blood 2006; 107: 2098–2100.

    Article  CAS  PubMed  Google Scholar 

  19. Cheung B, Radia D, Pantelidis P, Yadegarfar G, Harrison C . The presence of the JAK2 V617F mutation is associated with a higher haemoglobin and increased risk of thrombosis in essential thrombocythaemia. Br J Haematol 2006; 132: 244–245.

    Article  CAS  PubMed  Google Scholar 

  20. Tefferi A, Lasho TL, Schwager SM, Steensma DP, Mesa RA, Li CY et al. The JAK2(V617F) tyrosine kinase mutation in myelofibrosis with myeloid metaplasia: lineage specificity and clinical correlates. Br J Haematol 2005; 131: 320–328.

    Article  CAS  PubMed  Google Scholar 

  21. Melzner I, Bucur AJ, Bruderlein S, Dorsch K, Hasel C, Barth TF et al. Biallelic mutation of SOCS-1 impairs JAK2 degradation and sustains phospho-JAK2 action in the MedB-1 mediastinal lymphoma line. Blood 2005; 105: 2535–2542.

    Article  CAS  PubMed  Google Scholar 

  22. Galm O, Yoshikawa H, Esteller M, Osieka R, Herman JG . SOCS-1, a negative regulator of cytokine signaling, is frequently silenced by methylation in multiple myeloma. Blood 2003; 101: 2784–2788.

    Article  CAS  PubMed  Google Scholar 

  23. Galm O, Wilop S, Luders C, Jost E, Gehbauer G, Herman JG et al. Clinical implications of aberrant DNA methylation patterns in acute myelogenous leukemia. Ann Hematol 2005; 84 (Suppl 13): 39–46.

    Article  CAS  PubMed  Google Scholar 

  24. Takahashi T, Shivapurkar N, Reddy J, Shigematsu H, Miyajima K, Suzuki M et al. DNA methylation profiles of lymphoid and hematopoietic malignancies. Clin Cancer Res 2004; 10: 2928–2935.

    Article  CAS  PubMed  Google Scholar 

  25. Johan MF, Bowen DT, Frew ME, Goodeve AC, Reilly JT . Aberrant methylation of the negative regulators RASSFIA, SHP-1 and SOCS-1 in myelodysplastic syndromes and acute myeloid leukaemia. Br J Haematol 2005; 129: 60–65.

    Article  CAS  PubMed  Google Scholar 

  26. Chim CS, Fung TK, Cheung WC, Liang R, Kwong YL . SOCS1 and SHP1 hypermethylation in multiple myeloma: implications for epigenetic activation of the Jak/STAT pathway. Blood 2004; 103: 4630–4635.

    Article  CAS  PubMed  Google Scholar 

  27. Herman JG, Baylin SB . Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med 2003; 349: 2042–2054.

    Article  CAS  PubMed  Google Scholar 

  28. Esteller M, Herman JG . Cancer as an epigenetic disease: DNA methylation and chromatin alterations in human tumours. J Pathol 2002; 196: 1–7.

    Article  CAS  PubMed  Google Scholar 

  29. Jones PA, Laird PW . Cancer epigenetics comes of age. Nat Genet 1999; 21: 163–167.

    Article  CAS  PubMed  Google Scholar 

  30. Bird A . DNA methylation patterns and epigenetic memory. Genes Dev 2002; 16: 6–21.

    Article  CAS  PubMed  Google Scholar 

  31. Toyooka S, Tokumo M, Shigematsu H, Matsuo K, Asano H, Tomii K et al. Mutational and epigenetic evidence for independent pathways for lung adenocarcinomas arising in smokers and never smokers. Cancer Res 2006; 66: 1371–1375.

    Article  CAS  PubMed  Google Scholar 

  32. Lynch JP, Hoops TC . The genetic pathogenesis of colorectal cancer. Hematol Oncol Clin North Am 2002; 16: 775–810.

    Article  PubMed  Google Scholar 

  33. Aviram A, Witenberg B, Shaklai M, Blickstein D . Detection of methylated ABL1 promoter in philadelphia-negative myeloproliferative disorders. Blood Cells Mol Dis 2003; 30: 100–106.

    Article  CAS  PubMed  Google Scholar 

  34. Wang JC, Chen W, Nallusamy S, Chen C, Novetsky AD . Hypermethylation of the P15INK4b and P16INK4a in agnogenic myeloid metaplasia (AMM) and AMM in leukaemic transformation. Br J Haematol 2002; 116: 582–586.

    Article  CAS  PubMed  Google Scholar 

  35. Kumagai T, Tefferi A, Jones L, Koeffler HP . Methylation analysis of the cell cycle control genes in myelofibrosis with myeloid metaplasia. Leuk Res 2005; 29: 511–515.

    Article  CAS  PubMed  Google Scholar 

  36. Jones LC, Tefferi A, Idos GE, Kumagai T, Hofmann WK, Koeffler HP . RARbeta2 is a candidate tumor suppressor gene in myelofibrosis with myeloid metaplasia. Oncogene 2004; 23: 7846–7853.

    Article  CAS  PubMed  Google Scholar 

  37. Egger G, Liang G, Aparicio A, Jones PA . Epigenetics in human disease and prospects for epigenetic therapy. Nature 2004; 429: 457–463.

    Article  CAS  PubMed  Google Scholar 

  38. Galm O, Herman JG, Baylin SB . The fundamental role of epigenetics in hematopoietic malignancies. Blood Rev 2006; 20: 1–13.

    Article  CAS  PubMed  Google Scholar 

  39. Claus R, Lubbert M . Epigenetic targets in hematopoietic malignancies. Oncogene 2003; 22: 6489–6496.

    Article  CAS  PubMed  Google Scholar 

  40. Barosi G, Ambrosetti A, Finelli C, Grossi A, Leoni P, Liberato NL et al. The Italian Consensus Conference on diagnostic criteria for myelofibrosis with myeloid metaplasia. Br J Haematol 1999; 104: 730–737.

    Article  CAS  PubMed  Google Scholar 

  41. Jaffe ES, Lee Harris N, Stein H, Vardiman JW . Pathology and Genetics of Tumours of Haematopoietic and Lymphoid Tissues. Lyon: IARC Press, 2001.

    Google Scholar 

  42. Vardiman JW, Harris NL, Brunning RD . The World Health Organization (WHO) classification of the myeloid neoplasms. Blood 2002; 100: 2292–2302.

    Article  CAS  PubMed  Google Scholar 

  43. Herman JG, Graff JR, Myohanen S, Nelkin BD, Baylin SB . Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci USA 1996; 93: 9821–9826.

    Article  CAS  PubMed  Google Scholar 

  44. Galm O, Wilop S, Reichelt J, Jost E, Gehbauer G, Herman JG et al. DNA methylation changes in multiple myeloma. Leukemia 2004; 18: 1687–1692.

    Article  CAS  PubMed  Google Scholar 

  45. Galm O, Suzuki H, Akiyama Y, Esteller M, Brock MV, Osieka R et al. Inactivation of the tissue inhibitor of metalloproteinases-2 gene by promoter hypermethylation in lymphoid malignancies. Oncogene 2005; 24: 4799–4805.

    Article  CAS  PubMed  Google Scholar 

  46. Oka T, Ouchida M, Koyama M, Ogama Y, Takada S, Nakatani Y et al. Gene silencing of the tyrosine phosphatase SHP1 gene by aberrant methylation in leukemias/lymphomas. Cancer Res 2002; 62: 6390–6394.

    CAS  PubMed  Google Scholar 

  47. Galm O, Herman JG . Methylation-specific polymerase chain reaction. Methods Mol Med 2005; 113: 279–291.

    CAS  PubMed  Google Scholar 

  48. Steensma DP, Dewald GW, Lasho TL, Powell HL, McClure RF, Levine RL et al. The JAK2 V617F activating tyrosine kinase mutation is an infrequent event in both ‘atypical’ myeloproliferative disorders and myelodysplastic syndromes. Blood 2005; 106: 1207–1209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Diez-Martin JL, Graham DL, Petitt RM, Dewald GW . Chromosome studies in 104 patients with polycythemia vera. Mayo Clin Proc 1991; 66: 287–299.

    Article  CAS  PubMed  Google Scholar 

  50. Herman JG, Civin CI, Issa JP, Collector MI, Sharkis SJ, Baylin SB . Distinct patterns of inactivation of p15INK4B and p16INK4A characterize the major types of hematological malignancies. Cancer Res 1997; 57: 837–841.

    CAS  PubMed  Google Scholar 

  51. Issa JP, Baylin SB, Herman JG . DNA methylation changes in hematologic malignancies: biologic and clinical implications. Leukemia 1997; 11 (Suppl 1): S7–S11.

    PubMed  Google Scholar 

  52. Ungureanu D, Saharinen P, Junttila I, Hilton DJ, Silvennoinen O . Regulation of Jak2 through the ubiquitin-proteasome pathway involves phosphorylation of Jak2 on Y1007 and interaction with SOCS-1. Mol Cell Biol 2002; 22: 3316–3326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rottapel R, Ilangumaran S, Neale C, La Rose J, Ho JM, Nguyen MH et al. The tumor suppressor activity of SOCS-1. Oncogene 2002; 21: 4351–4362.

    Article  CAS  PubMed  Google Scholar 

  54. Starr R, Hilton DJ . SOCS: suppressors of cytokine signalling. Int J Biochem Cell Biol 1998; 30: 1081–1085.

    Article  CAS  PubMed  Google Scholar 

  55. Campbell PJ, Griesshammer M, Dohner K, Dohner H, Kusec R, Hasselbalch HC et al. The V617F mutation in JAK2 is associated with poorer survival in idiopathic myelofibrosis. Blood 2006; 107: 2098–2100.

    Article  CAS  PubMed  Google Scholar 

  56. Schafer AI . Molecular basis of the diagnosis and treatment of polycythemia vera and essential thrombocythemia. Blood 2006; 107: 4214–4222.

    Article  CAS  PubMed  Google Scholar 

  57. Grady WM, Markowitz SD . Genetic and epigenetic alterations in colon cancer. Annu Rev Genomics Hum Genet 2002; 3: 101–128.

    Article  CAS  PubMed  Google Scholar 

  58. van Engeland M, Roemen GM, Brink M, Pachen MM, Weijenberg MP, de Bruine AP et al. K-ras mutations and RASSF1A promoter methylation in colorectal cancer. Oncogene 2002; 21: 3792–3795.

    Article  CAS  PubMed  Google Scholar 

  59. Deininger M, Buchdunger E, Druker BJ . The development of imatinib as a therapeutic agent for chronic myeloid leukemia. Blood 2005; 105: 2640–2653.

    Article  CAS  PubMed  Google Scholar 

  60. Levitzki A . Tyrosine kinases as targets for cancer therapy. Eur J Cancer 2002; 38 (Suppl 5): S11–S18.

    Article  PubMed  Google Scholar 

  61. Meydan N, Grunberger T, Dadi H, Shahar M, Arpaia E, Lapidot Z et al. Inhibition of acute lymphoblastic leukaemia by a Jak-2 inhibitor. Nature 1996; 379: 645–648.

    Article  CAS  PubMed  Google Scholar 

  62. Gilbert J, Gore SD, Herman JG, Carducci MA . The clinical application of targeting cancer through histone acetylation and hypomethylation. Clin Cancer Res 2004; 10: 4589–4596.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Sandra Mellen, Lucia Vankann, Ramona Latton, Inge Losen and Ingeborg Wiegand for expert technical assistance. This work was supported by grants from the Rheinisch-Westfaelische Technische Hochschule Aachen (START program) and the Deutsche Krebshilfe. JGH is a paid consultant to and receives research support from OncoMethylome Sciences. The terms of this arrangement are being managed by the Johns Hopkins University in accordance with its conflict of interest policies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O Galm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jost, E., do Ó, N., Dahl, E. et al. Epigenetic alterations complement mutation of JAK2 tyrosine kinase in patients with BCR/ABL-negative myeloproliferative disorders. Leukemia 21, 505–510 (2007). https://doi.org/10.1038/sj.leu.2404513

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404513

Keywords

This article is cited by

Search

Quick links