Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Stem Cells

Morphological and molecular characterization of novel population of CXCR4+ SSEA-4+ Oct-4+ very small embryonic-like cells purified from human cord blood – preliminary report

Abstract

Recently, we purified from adult murine bone marrow (BM) a population of CXCR4+, Oct-4+ SSEA-1+, Sca-1+ lin CD45 very small embryonic-like (VSEL) stem cells and hypothesized that similar cells could be also present in human cord blood (CB). Here, we report that by employing a novel two-step isolation procedure – removal of erythrocytes by hypotonic lysis combined with multiparameter sorting – we could isolate from CB a population of human cells that are similar to murine BM-derived VSELs, described previously by us. These CB-isolated VSELs (CB-VSEL) are very small (3–5 μm) and highly enriched in a population of CXCR4+AC133+CD34+lin CD45 CB mononuclear cells, possess large nuclei containing unorganized euchromatin and express nuclear embryonic transcription factors Oct-4 and Nanog and surface embryonic antigen SSEA-4. Further studies are needed to see if human CB-isolated VSELs similar to their murine BM-derived counterparts are endowed with pluripotent stem cell properties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Shyu WC, Lin SZ, Yang HI, Tzeng YS, Pang CY, Yen PS et al. Functional recovery of stroke rats induced by granulocyte colony-stimulating factor-stimulated stem cells. Circulation 2004; 110: 1847–1854.

    Article  CAS  Google Scholar 

  2. Buzanska L, Machaj EK, Zablocka B, Pojda Z, Domanska-Janik K . Human cord blood-derived cells attain neuronal and glial features in vitro. J Cell Sci 2002; 115: 2131–2138.

    CAS  PubMed  Google Scholar 

  3. Pesce M, Orlandi A, Iachininoto MG, Straino S, Torella AR, Rizzuti V et al. Myoendothelial differentiation of human umbilical cord blood-derived stem cells in ischemic limb tissues. Circ Res 2003; 93: e51–e62.

    Article  Google Scholar 

  4. Di Campli C, Piscaglia AC, Pierelli L, Rutella S, Bonanno G, Alison MR et al. A human umbilical cord stem cell rescue therapy in a murine model of toxic liver injury. Dig Liver Dis 2004; 36: 603–613.

    Article  CAS  Google Scholar 

  5. Newsome PN, Johannessen I, Boyle S, Dalakas E, McAulay KA, Samuel K et al. Human cord blood-derived cells can differentiate into hepatocytes in the mouse liver with no evidence of cellular fusion. Gastroenterology 2003; 124: 1891–1900.

    Article  Google Scholar 

  6. Wagers AJ, Weissman IL . Plasticity of adult stem cells. Cell 2004; 116: 639–648.

    Article  CAS  Google Scholar 

  7. Mezey E, Chandross KJ, Harta G, Maki RA, McKercher SR . Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science 2000; 290: 1779–1782.

    Article  CAS  Google Scholar 

  8. Castro RF, Jackson KA, Goodell MA, Robertson CS, Liu H, Shine HD . Failure of bone marrow cells to transdifferentiate into neural cells in vivo. Science 2002; 297: 1299.

    Article  CAS  Google Scholar 

  9. Nygren JM, Jovinge S, Breitbach M, Sawen P, Roll W, Hescheler J et al. Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation. Nat Med 2004; 10: 494–501.

    Article  CAS  Google Scholar 

  10. Murry CE, Soonpaa MH, Reinecke H, Nakajima H, Nakajima HO, Rubart M et al. Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 2004; 428: 664–668.

    Article  CAS  Google Scholar 

  11. Orkin SH, Zon LI . Hematopoiesis and stem cells: plasticity versus developmental heterogeneity. Nat Immunol 2002; 3: 323–328.

    Article  CAS  Google Scholar 

  12. Ratajczak MZ, Kucia M, Reca R, Majka M, Janowska-Wieczorek A, Ratajczak J . Stem cell plasticity revisited: CXCR4-positive cells expressing mRNA for early muscle, liver and neural cells ‘hide out’ in the bone marrow. Leukemia 2004; 18: 29–40.

    Article  CAS  Google Scholar 

  13. Kogler G, Sensken S, Airey JA, Trapp T, Muschen M, Feldhahn N et al. A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential. J Exp Med 2004; 200: 123–135.

    Article  Google Scholar 

  14. Jankowski K, Kucia M, Wysoczynski M, Reca R, Zhao D, Trzyna E et al. Both hepatocyte growth factor (HGF) and stromal-derived factor-1 regulate the metastatic behavior of human rhabdomyosarcoma cells, but only HGF enhances their resistance to radiochemotherapy. Cancer Res 2003; 63: 7926–7935.

    CAS  PubMed  Google Scholar 

  15. Kucia M, Reca R, Campbell FR, Zuba-Surma E, Majka M, Ratajczak J et al. A population of very small embryonic-like (VSEL) CXCR4(+)SSEA-1(+)Oct-4+ stem cells identified in adult bone marrow. Leukemia 2006; 20: 857–869.

    Article  CAS  Google Scholar 

  16. Yu H, Fang D, Kumar SM, Li L, Nguyen TK, Acs G et al. Isolation of a novel population of multipotent adult stem cells from human hair follicles. Am J Pathol 2006; 168: 1879–1888.

    Article  CAS  Google Scholar 

  17. Ling TY, Kuo MD, Li CL, Yu AL, Huang YH, Wu TJ et al. Identification of pulmonary Oct-4+ stem/progenitor cells and demonstration of their susceptibility to SARS coronavirus (SARS-CoV) infection in vitro. Proc Natl Acad Sci USA 2006; 103: 9530–9535.

    Article  CAS  Google Scholar 

  18. Johnson J, Bagley J, Skaznik-Wikiel M, Lee HJ, Adams GB, Niikura Y et al. Oocyte generation in adult mammalian ovaries by putative germ cells in bone marrow and peripheral blood. Cell 2005; 122: 303–315.

    Article  CAS  Google Scholar 

  19. Guan K, Nayernia K, Maier LS, Wagner S, Dressel R, Lee JH et al. Pluripotency of spermatogonial stem cells from adult mouse testis. Nature 2006; 440: 1199–1203.

    Article  CAS  Google Scholar 

  20. Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B et al. Bone marrow cells regenerate infarcted myocardium. Nature 2001; 410: 701–705.

    Article  CAS  Google Scholar 

  21. Almeida-Porada G, Porada CD, Chamberlain J, Torabi A, Zanjani ED . Formation of human hepatocytes by human hematopoietic stem cells in sheep. Blood 2004; 104: 2582–2590.

    Article  CAS  Google Scholar 

  22. Sanchez-Ramos JR . Neural cells derived from adult bone marrow and umbilical cord blood. J Neurosci Res 2002; 69: 880–893.

    Article  CAS  Google Scholar 

  23. Schwartz RE, Reyes M, Koodie L, Jiang Y, Blackstad M, Lund T et al. Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells. J Clin Invest 2002; 109: 1291–1302.

    Article  CAS  Google Scholar 

  24. Terada N, Hamazaki T, Oka M, Hoki M, Mastalerz DM, Nakano Y et al. Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature 2002; 416: 542–545.

    Article  CAS  Google Scholar 

  25. Terashima T, Kojima H, Fujimiya M, Matsumura K, Oi J, Hara M et al. The fusion of bone-marrow-derived proinsulin-expressing cells with nerve cells underlies diabetic neuropathy. Proc Natl Acad Sci USA 2005; 102: 12525–12530.

    Article  CAS  Google Scholar 

  26. Alvarez-Dolado M, Pardal R, Garcia-Verdugo JM, Fike JR, Lee HO, Pfeffer K et al. Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature 2003; 425: 968–973.

    Article  CAS  Google Scholar 

  27. Ishikawa F, Shimazu H, Shultz LD, Fukata M, Nakamura R, Lyons B et al. Purified human hematopoietic stem cells contribute to the generation of cardiomyocytes through cell fusion. FASEB J 2006; 20: 950–952.

    Article  CAS  Google Scholar 

  28. Kucia M, Reca R, Jala VR, Dawn B, Ratajczak J, Ratajczak MZ . Bone marrow as a home of heterogenous populations of nonhematopoietic stem cells. Leukemia 2005; 19: 1118–1127.

    Article  CAS  Google Scholar 

  29. Kucia M, Zhang YP, Reca R, Wysoczynski M, Machalinski B, Majka M et al. Cells enriched in markers of neural tissue-committed stem cells reside in the bone marrow and are mobilized into the peripheral blood following stroke. Leukemia 2006; 20: 18–28.

    Article  CAS  Google Scholar 

  30. Kucia M, Dawn B, Hunt G, Guo Y, Wysoczynski M, Majka M et al. Cells expressing early cardiac markers reside in the bone marrow and are mobilized into the peripheral blood after myocardial infarction. Circ Res 2004; 95: 1191–1199.

    Article  CAS  Google Scholar 

  31. Virchow R . Editorial Archive fuer pathologische. Anat Physiol Klin Med 1855; 8: 23–54.

    Google Scholar 

  32. Jordan HE . The History of the Primordial Germ Cells in the Loggerhead Turtle Embryo. Proc Natl Acad Sci USA 1917; 3: 271–275.

    Article  CAS  Google Scholar 

  33. Kucia M, Ratajczak J, Ratajczak MZ . Bone marrow as a source of circulating CXCR4+ tissue-committed stem cells. Biol Cell 2005; 97: 133–146.

    Article  CAS  Google Scholar 

  34. Dyce PW, Wen L, Li J . In vitro germline potential of stem cells derived from fetal porcine skin. Nat Cell Biol 2006; 8: 384–390.

    Article  CAS  Google Scholar 

  35. Nayernia K, Lee JH, Drusenheimer N, Nolte J, Wulf G, Dressel R et al. Derivation of male germ cells from bone marrow stem cells. Lab Invest 2006; 86: 654–663.

    Article  CAS  Google Scholar 

  36. Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 2002; 418: 41–49.

    Article  CAS  Google Scholar 

  37. D'Ippolito G, Diabira S, Howard GA, Menei P, Roos BA, Schiller PC . Marrow-isolated adult multilineage inducible (MIAMI) cells, a unique population of postnatal young and old human cells with extensive expansion and differentiation potential. J Cell Sci 2004; 117: 2971–2981.

    Article  CAS  Google Scholar 

  38. Jiang Y, Vaessen B, Lenvik T, Blackstad M, Reyes M, Verfaillie CM . Multipotent progenitor cells can be isolated from postnatal murine bone marrow, muscle, and brain. Exp Hematol 2002; 30: 896–904.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by an NIH Grants R01 CA106281-01 and R01 DK074720 to MZR. The technical help of Kathy Caple from the University of Louisville for preparing TEM analysis is also appreciated. We thank Dr R Czajka from the Pomeranian Medical University in Szczecin, Poland and Dr J Sotomayor from the Foundation ‘Babies for Life’ from Atlanta, Georgia for supporting us with fresh human CB samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Z Ratajczak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kucia, M., Halasa, M., Wysoczynski, M. et al. Morphological and molecular characterization of novel population of CXCR4+ SSEA-4+ Oct-4+ very small embryonic-like cells purified from human cord blood – preliminary report. Leukemia 21, 297–303 (2007). https://doi.org/10.1038/sj.leu.2404470

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404470

Keywords

This article is cited by

Search

Quick links