Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Immunology

T cells stimulated by CD40L positive leukemic blasts-pulsed dendritic cells meet optimal functional requirements for adoptive T-cell therapy

Abstract

Adoptive T-cell immunotherapy may provide complementary therapy for childhood B-cell precursor acute lymphoblastic leukemia (BCP-ALL). In this study, we have analyzed the functional characteristics of anti-BCP-ALL effector T cells generated by co-culturing T lymphocytes and dendritic cells (DC) from allogeneic human stem cell transplantation (HSCT) donors. After 21-day co-culture with DC pulsed with CD40L+ apoptotic BCP-ALL blasts, T cells presented with both effector and central memory phenotype, and showed high and specific cytotoxic activity against leukemic cells (average lysis=77%), mostly mediated by CD8+ T cells. Noticeably, growth of CD4 T cells was maintained (45% of total cells), which actively produced Th1 cytokines (IFN-γ, TNF-α, IL-2), but not IL-4, IL-5 and IL-10. Anti-BCP-ALL T cells expressed CD49d and CXCR4 (implicated in the recruitment to bone marrow), and CD62L and CCR7 (involved in the migration to lymphoid organs). In accordance with this profile, T cells significantly migrated in response to the chemokines CXCL12 and CCL19. In conclusion, stimulation of T cells with CD40L+BCP-ALL cells-loaded DC not only elicited the generation of potent and specific anti-leukemic cytotoxic effectors, but also the differentiation of specific and functional Th-1 CD4 lymphocytes. These effectors are fully equipped to reach leukemia-infiltrated tissues and have characteristics to support and orchestrate the anti-tumor immune-response.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Pui CH, Campana D, Evans WE . Childhood acute lymphoblastic leukaemia, current status and future perspective. Lancet Oncol 2001; 2: 597–607.

    Article  CAS  PubMed  Google Scholar 

  2. Ladenstein R, Peters C, Gadner H . The present role of bone marrow and stem cell transplantation in the therapy of children with acute leukemia. Proc Natl Acad Sci USA 1997; 824: 38–64.

    Article  CAS  Google Scholar 

  3. Cardoso AA, Seamon MJ, Afonso HM, Ghia P, Boussiotis VA, Freeman GJ et al. Ex vivo generation of human anti-BCP leukemia-specific autologous cytolytic T cells. Blood 1997; 90: 549–561.

    CAS  PubMed  Google Scholar 

  4. Stripecke R, Levine AM, Pullarkat V, Cardoso AA . Immunotherapy with acute leukemia cells modified into antigen-presenting cells: ex vivo culture and gene transfer methods. Leukemia 2002; 16: 1974–1983.

    Article  CAS  PubMed  Google Scholar 

  5. Costello RT, Gastaut JA, Olive D . What is the real role of CD40 in cancer immunotherapy? Immunol Today 1999; 20: 488–493.

    Article  CAS  PubMed  Google Scholar 

  6. Haining WN, Cardoso AA, Keczkemethy HL, Fleming M, Neuberg D, DeAngelo DJ et al. Failure to define window of time for autologous tumor vaccination in patients with newly diagnosed or relapsed acute lymphoblastic leukemia. Exp Hematol 2005; 33: 286–294.

    Article  CAS  PubMed  Google Scholar 

  7. Rosenberg SA, Yang JC, Restifo NP . Cancer immunotherapy: moving beyond current vaccines. Nat Med 2004; 10: 909–915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Knutson KL, Disis ML . Tumor antigen-specific T helper cells in cancer immunity and immunotherapy. Cancer Immunol Immunother 2005; 54: 721–728.

    Article  CAS  PubMed  Google Scholar 

  9. Hung K, Hayashi R, Lafond-Walker A, Lowenstein C, Pardoll D, Levitsky H . The central role of CD4(+) T cells in the antitumor immune response. J Exp Med 1998; 188: 2357–2368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fruh K, Yang Y . Antigen presentation by MHC class I and its regulation by interferon gamma. Curr Opin Immunol 1999; 11: 76–78.

    Article  CAS  PubMed  Google Scholar 

  11. Dranoff G, Jaee E, Lazenby A, Golumbek P, Levitsky H, Brose K et al. Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc Natl Acad Sci USA 1993; 90: 3539–3543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Schattner EJ, Mascarenhas J, Bishop J, Yoo DH, Chadburn A, Crow MK et al. CD4+ T-cell induction of fas-mediated apoptosis in Burkitt's lymphoma B cells. Blood 1996; 88: 1375–1382.

    CAS  PubMed  Google Scholar 

  13. Thomas WD, Hersey P . TNF-related apoptosis-inducing ligand (TRAIL) induces apoptosis in fas ligand-resistant melanoma cells and mediates CD4 T cell killing of target cells. J Immunol 1998; 161: 2195–2200.

    CAS  PubMed  Google Scholar 

  14. Echchakir H, Bagot M, Dorothee G, Martinvalet D, Le Gouvello S, Boumsell L . T cell lymphoma reactive CD4+ cytotoxic T lymphocyte clones display a Th1 cytokine profile and use a fas-independent pathway for specific tumor cell lysis. J Invest Dermatol 2000; 115: 74–80.

    Article  CAS  PubMed  Google Scholar 

  15. Cohen PA, Peng L, Plautz GE, Kim JA, Weng DE, Shu S . CD4+ T cells in adoptive immunotherapy and the indirect mechanism of tumor rejection. Crit Rev Immunol 2000; 20: 17–56.

    Article  CAS  PubMed  Google Scholar 

  16. Kalams SA, Walker BD . The critical need for CD4 help in maintaining effective cytotoxic T lymphocyte responses. J Exp Med 1998; 188: 2199–2204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ossendorp F, Toes RE, Offringa R, van der Burg SH, Melief CJ . Importance of CD4(+) T helper cell responses in tumor immunity. Immunol Lett 2000; 74: 75–79.

    Article  CAS  PubMed  Google Scholar 

  18. Gao FG, Khammanivong V, Liu WJ, Leggatt GR, Frazer IH, Fernando GJ . Antigen-specific CD4+ T-cell help is required to activate a memory CD8+ T cell to a fully functional tumor killer cell. Cancer Res 2002; 62: 6438–6441.

    CAS  PubMed  Google Scholar 

  19. Grewal IS, Flavell RA . CD40 and CD154 in cell – mediated immunity. Ann Rev Immunol 1998; 16: 111–155.

    Article  CAS  Google Scholar 

  20. Cella M, Sheidegge D, Palmer-Lehmann K, Lane P, Lanzavecchia A, Alber G . Ligation of CD40 on dendritic cells triggers production of high levels of interleukin-12 and enhances T cell stimulatory capacity: T-T help via APC activation. J Exp Med 1996; 184: 747–752.

    Article  CAS  PubMed  Google Scholar 

  21. Trinchieri G . Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol 2003; 3: 133–146.

    Article  CAS  PubMed  Google Scholar 

  22. Mihara K, Imai C, Coustan-Smith E, Dome JS, Dominici M, Vanin E et al. Development and functional characterization of human bone marrow mesenchymal cells immortalized by enforced expression of telomerase. Br J Haematol 2003; 120: 846–849.

    Article  CAS  PubMed  Google Scholar 

  23. Bonamino M, Serafini M, D'Amico G, Gaipa G, Todisco E, Bernasconi S et al. Functional transfer of CD40L gene in human B-cell precursor ALL blasts by second generation SIN lentivectors. Gene Therapy 2000; 11: 85–93.

    Article  Google Scholar 

  24. D'Amico G, Bonamino M, Marin V, Biondi A . Potential use of CD40 ligand for immunotherapy of childhood B-Cell precursor acute lymphoblastic leukaemia. Best Prac Res Clinic Haem 2004; 17: 465–477.

    Article  CAS  Google Scholar 

  25. Zennou V, Petit C, Guetard D, Nerhbass U, Montagnier L, Charneau P . HIV-1 genome nuclear import is mediated by a central DNA flap. Cell 2000; 101: 173–185.

    Article  CAS  PubMed  Google Scholar 

  26. Zufferey R, Donello JE, Trono D, Hope TJ . Woodchuck hepatitis virus posttranscriptional regulatory element enhances expression of transgenes delivered by retroviral vectors. J Virol 1999; 73: 2886–2892.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. D'Amico G, Vulcano M, Bugarin C, Bianchi G, Pirovano G, Bonamino M et al. CD40 activation of BCP-ALL cells generates IL-10–producing, IL-12–defective APCs that induce allogeneic T-cell anergy. Blood 2004; 104: 744–751.

    Article  CAS  PubMed  Google Scholar 

  28. Biagi E, Yvon E, Dotti G, Amrolia PJ, Takahashi S, Popat U et al. Bystander transfer of functional human CD40 ligand from gene-modified fibroblasts to B-chronic lymphocytic leukemia cells. Hum Gene Ther 2003; 14: 545–559.

    Article  CAS  PubMed  Google Scholar 

  29. Biagi E, Dotti G, Yvon E, Lee E, Pule M, Vigouroux S et al. Molecular transfer of CD40 and OX40 ligands to leukemic human B cells induces expansion of autologous tumor-reactive cytotoxic T lymphocytes. Blood 2005; 105: 2436–2442.

    Article  CAS  PubMed  Google Scholar 

  30. Watanabe S, Shimosato Y, Kameya T, Kuroki M, Kitahara T, Minato K et al. Leukemic distribution of a human acute lymphocytic leukemia cell line (ichikawa strain) in nude mice conditioned with whole body irradiation. Cancer Res 1978; 38: 3494–3498.

    CAS  PubMed  Google Scholar 

  31. Crazzolara R, Kreczy A, Mann G, Heitger A, Eibl G, Fink FM et al. High expression of the chemokine receptor CXCR4 predicts extramedullary organ infiltration in childhood acute lymphoblastic leukemia. Br J Haematol 2001; 115: 545–553.

    Article  CAS  PubMed  Google Scholar 

  32. Lock RB, Liem N, Farnsworth ML, Milross CG, Xue C, Tajbakhsh M et al. The nonobese diabetic/sever combined immunodeficient (NOD/SCID) mouse model of childhood acute lymphoblastic leukemia reveals intrinsic differences in biological characteristics at diagnosis and relapse. Blood 2002; 99: 4100–4108.

    Article  CAS  PubMed  Google Scholar 

  33. Lanzavecchia A, Sallusto F . Understanding the generation and function of memory T cell subsets. Curr Opin Immunol 2005; 17: 326–332.

    Article  CAS  PubMed  Google Scholar 

  34. Rose DM, Han J, Ginsberg MH . Alpha4 integrins and the immune response. Immunol Rev 2002; 186: 118–124.

    Article  CAS  PubMed  Google Scholar 

  35. Frenette PS, Subbarao S, Mazo IB, von Adrian UH, Wagner DD . Endothelial selectins and vascular adhesion-molecule-1 promote hematopoietic progenitor homing to bone marrow. Proc Natl Acad Sci 1998; 95: 14423–14428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Stamenkovic I . The L-selectin adhesion system. Curr Opin Hematol 1995; 2: 68–75.

    Article  CAS  PubMed  Google Scholar 

  37. Nagasawa TA . Chemokine, SDF-1/PBSF, and its receptor, CXC chemokine receptor 4, as mediators of hematopoiesis. Int J hematol 2000; 72: 408–411.

    CAS  PubMed  Google Scholar 

  38. Lapidot T . Mechanism of human stem cell migration and repopulation of NOD/SCID and B2mnull NOD/SCID mice. The role of SDF-1/CXCR4 interactions. Ann NY Acad Sci 2001; 938: 83–95.

    Article  CAS  PubMed  Google Scholar 

  39. Ngo VN, Tang HL, Cyster JG . Epstein-Barr virus-induced molecule 1 ligand chemokine is expressed by dendritic cells in lymphoid tissues and strongly attracts naive T cells and activated B cells. J Exp Med 1998; 188: 181–185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kim CH, Pelus LM, White JR, Applebaum E, Johanson K, Broxmeyer HE . CK beta-11/macrophage inflammatory protein-3 beta/EBI1-ligand chemokine is an efficacious chemoattractant for T and B cells. J Immunol 1998; 160: 2224–2418.

    Google Scholar 

  41. Finn OJ . Cancer vaccines: between the idea and the reality. Nat Rev Immunol 2003; 3: 630–641.

    Article  CAS  PubMed  Google Scholar 

  42. Van Der Bruggen P, Zhang P, Chaux V, Van Stroobant C, Panichelli C, Schultz J et al. Tumor-specific shared antigenic peptides recognized by human T cells. Immunol Rev 2002; 188: 51–64.

    Article  CAS  PubMed  Google Scholar 

  43. Mortarini R, Piris A, Maurichi A, Molla A, Bersani I, Bono A et al. Lack of terminally differentiated tumor-specific CD8+ T cells at tumor site in spite of antitumor immunity to self-antigens in human metastatic melanoma. Cancer Res 2003; 63: 2535–2545.

    CAS  PubMed  Google Scholar 

  44. Marincola FM, Jaffee EM, Hicklin DJ, Ferrone S . Escape of human solid tumors from T-cell recognition: molecular mechanisms and functional significance. Adv Immunol 2000; 74: 181–273.

    Article  CAS  PubMed  Google Scholar 

  45. Kuniyoshi JS, Kuniyoshi CJ, Lim AM, Wang FY, Bade ER, Lau R et al. Dendritic cell secretion of IL-15 is induced by recombinant huCD40LT and augments the stimulation of antigen-specific cytolytic T cells. Cell Immunol 1999; 193: 48–58.

    Article  CAS  PubMed  Google Scholar 

  46. Ribas A, Butterfield LH, Amarnani SN, Dissette VB, Kim D, Meng WS et al. CD40 cross-linking bypasses the absolute requirement for CD4 T cells during immunization with melanoma antigen gene-modified dendritic cells. Cancer Res 2001; 61: 8787–8793.

    CAS  PubMed  Google Scholar 

  47. Montagna D, Maccario R, Locatelli F, Rosti V, Yang Y, Farness P et al. Ex vivo priming for long-term maintenance of antileukemia human cytotoxic T cells suggests a general procedure for adoptive immunotherapy. Blood 2001; 98: 3359–3366.

    Article  CAS  PubMed  Google Scholar 

  48. Kaech SM, Ahmed R . Memory CD8+ T cell differentiation: initial antigen encounter triggers a developmental program in naive cells. Nat Immunol 2001; 5: 415–422.

    Article  Google Scholar 

  49. Sallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A . Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 1999; 401: 708–712.

    Article  CAS  PubMed  Google Scholar 

  50. Zinkernagel RM, Callahan GN, Althage G, Cooper S, Streilein JW, Klein J . The lymphoreticular system in triggering virus plus self-specific cytotoxic T cells: evidence for T help. J Exp Med 1978; 147: 897–911.

    Article  CAS  PubMed  Google Scholar 

  51. Cassell D, Forman J . Linked recognition of helper and cytotoxic antigenic determinants for the generation of cytotoxic T lymphocytes. Ann NY Acad Sci 1988; 532: 51–60.

    Article  CAS  PubMed  Google Scholar 

  52. Langenkamp A, Messi M, Lanzavecchia A, Sallusto F . Kinetics of dendritic cell activation: impact on priming of TH1, TH2 and nonpolarized T cells. Nat Immunol 2000; 1: 311–316.

    Article  CAS  PubMed  Google Scholar 

  53. Lanzavecchia A, Sallusto F . The instructive role of dendritic cells on T cell responses: lineages, plasticity and kinetics. Curr Opin Immunol 2001; 13: 291–298.

    Article  CAS  PubMed  Google Scholar 

  54. Fruh K, Yang Y . Antigen presentation by MHC class I and its regulation by interferon gamma. Curr Opin Immunol 1999; 1: 76–81.

    Article  Google Scholar 

  55. Lertmemongkolchai G, Cai G, Hunter CA, Bancroft GJ . Bystander activation of CD8(+) T cells contributes to the rapid production of IFN-gamma in response to bacterial pathogens. J Immunol 2001; 166: 1097–1105.

    Article  CAS  PubMed  Google Scholar 

  56. Berg RE, Crossley E, Murray S, Forman J . Memory CD8+ T cells provide innate immune protection against Listeria monocytogenes in the absence of cognate antigen. J Exp Med 2003; 198: 1583–1593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Berg RE, Cordes CJ, Forman J . Contribution of CD8+ T cells to innate immunity: IFN-gamma secretion induced by IL-12 and IL-18. Eur J Immunol 2002; 32: 2807–2816.

    Article  CAS  PubMed  Google Scholar 

  58. Di Rosa F, Pabst R . The bone marrow: a nest for migratory memory T cells. Trends Immunol 2005; 26: 360–366.

    Article  CAS  PubMed  Google Scholar 

  59. Seder RA, Ahmed R . Similarities and differences in CD4+ and CD8+ effector and memory T cell generation. Nat Immunol 2003; 4: 835–842.

    Article  CAS  PubMed  Google Scholar 

  60. Kaech SM, Wherry EJ, Ahmed R . Effector and memory T-cell differentiation: implications for vaccine development. Nat Rev Immunol 2002; 2: 251–262.

    Article  CAS  PubMed  Google Scholar 

  61. Biagi E, Rousseau R, Yvon E, Schwartz M, Dotti G, Foster A et al. Responses to human CD40 ligand/human interleukin-2 autologous cell vaccine in patients with B-cell chronic lymphocytic leukemia. Clin Cancer Res 2005; 11: 6916–6923.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Dario Campana (St. Jude Children' Research Hospital, Memphis, TN) for providing us with the human bone marrow stromal cell line. The authors want to express their gratitude to Dr Paola Allavena for critical reading of this paper. This work was supported in part by grants from the Associazione Italiana Ricerca sul Cancro (AIRC), MIUR PRIN 2003 (2003 069141_005), the Fondazione ‘M Tettamanti’, the Comitato ‘S Verri’ and Fondazione Città Della Speranza (GB). V Marin is a fellow of the Vita-Salute San Raffaele University PhD program in Molecular Medicine. M Bonamino is a fellow of the Medical Biochemistry Institute program of the Universidade Federal do Rio de Janeiro and of the Instituto Nacional de Câncer (INCa), Brazil, and supported by CAPES and Fondazione ‘M Tettamanti’ scholarships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G D'Amico.

Rights and permissions

Reprints and permissions

About this article

Cite this article

D'Amico, G., Bonamino, M., Dander, E. et al. T cells stimulated by CD40L positive leukemic blasts-pulsed dendritic cells meet optimal functional requirements for adoptive T-cell therapy. Leukemia 20, 2015–2024 (2006). https://doi.org/10.1038/sj.leu.2404390

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404390

Keywords

This article is cited by

Search

Quick links