Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Rationale for the recommendations for harmonizing current methodology for detecting BCR-ABL transcripts in patients with chronic myeloid leukaemia

Abstract

Molecular monitoring for patients with chronic myeloid leukaemia (CML) has become an important practice in the era of imatinib therapy. For successful widespread introduction into the mainstream patient monitoring schedule, many procedural aspects of the complex real-time quantitative polymerase chain reaction (RQ-PCR) technique for measuring BCR-ABL transcripts require optimization. Recommendations for harmonizing the differing methodologies have recently been proposed. These recommendations were designed to maximize reliability of analysis for clinical decision making and proposed the adoption of an International Scale of measurement. The purpose of this review is to present the evidence and supporting data for specific recommendations. These recommendations include use of the same source of cells, either blood or marrow, for analysis; for validation of equal PCR amplification efficiencies of cDNA and standards when using a plasmid to construct standard curves and for ensuring ongoing high-level performance by undertaking a quality assurance programme. Clinicians must know the measurement reliability of an RQ-PCR assay to be able to determine the significance of a change in BCR-ABL level. An assay with poor precision limits the clinical usefulness of results. International harmonization should establish RQ-PCR measurement of BCR-ABL as the best method for monitoring treatment response for patients with CML.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Emig M, Saussele S, Wittor H, Weisser A, Reiter A, Willer A et al. Accurate and rapid analysis of residual disease in patients with CML using specific fluorescent hybridization probes for real time quantitative RT-PCR. Leukemia 1999; 13: 1825–1832.

    Article  CAS  PubMed  Google Scholar 

  2. Branford S, Hughes TP, Rudzki Z . Monitoring chronic myeloid leukaemia therapy by real-time quantitative PCR in blood is a reliable alternative to bone marrow cytogenetics. Br J Haematol 1999; 107: 587–599.

    Article  CAS  PubMed  Google Scholar 

  3. Radich JP, Gooley T, Bryant E, Chauncey T, Clift R, Beppu L et al. The significance of bcr-abl molecular detection in chronic myeloid leukemia patients ‘late,’ 18 months or more after transplantation. Blood 2001; 98: 1701–1707.

    Article  CAS  PubMed  Google Scholar 

  4. Merx K, Muller MC, Kreil S, Lahaye T, Paschka P, Schoch C et al. Early reduction of BCR-ABL mRNA transcript levels predicts cytogenetic response in chronic phase CML patients treated with imatinib after failure of interferon alpha. Leukemia 2002; 16: 1579–1583.

    Article  CAS  PubMed  Google Scholar 

  5. Lee WI, Kantarjian H, Glassman A, Talpaz M, Lee MS . Quantitative measurement of BCR/abl transcripts using real-time polymerase chain reaction. Ann Oncol 2002; 13: 781–788.

    Article  CAS  PubMed  Google Scholar 

  6. Wang L, Pearson K, Pillitteri L, Ferguson JE, Clark RE . Serial monitoring of BCR-ABL by peripheral blood real-time polymerase chain reaction predicts the marrow cytogenetic response to imatinib mesylate in chronic myeloid leukaemia. Br J Haematol 2002; 118: 771–777.

    Article  CAS  PubMed  Google Scholar 

  7. Muller MC, Gattermann N, Lahaye T, Deininger MW, Berndt A, Fruehauf S et al. Dynamics of BCR-ABL mRNA expression in first-line therapy of chronic myelogenous leukemia patients with imatinib or interferon alpha/ara-C. Leukemia 2003; 17: 2392–2400.

    Article  CAS  PubMed  Google Scholar 

  8. Branford S, Rudzki Z, Harper A, Grigg A, Taylor K, Durrant S et al. Imatinib produces significantly superior molecular responses compared to interferon alfa plus cytarabine in patients with newly diagnosed chronic myeloid leukemia in chronic phase. Leukemia 2003; 17: 2401–2409.

    Article  CAS  PubMed  Google Scholar 

  9. Kantarjian HM, Talpaz M, Cortes J, O'Brien S, Faderl S, Thomas D et al. Quantitative polymerase chain reaction monitoring of BCR-ABL during therapy with imatinib mesylate (STI571; gleevec) in chronic-phase chronic myelogenous leukemia. Clin Cancer Res 2003; 9: 160–166.

    CAS  PubMed  Google Scholar 

  10. Kaeda J, O'Shea D, Szydlo RM, Olavarria E, Dazzi F, Marin D et al. Serial measurement of BCR-ABL transcripts in the peripheral blood after allogeneic stem cell transplantation for chronic myeloid leukemia: an attempt to define patients who may not require further therapy. Blood 2006; 107: 4171–4176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hughes TP, Kaeda J, Branford S, Rudzki Z, Hochhaus A, Hensley ML et al. Frequency of major molecular responses to imatinib or interferon alfa plus cytarabine in newly diagnosed chronic myeloid leukemia. N Engl J Med 2003; 349: 1423–1432.

    Article  CAS  PubMed  Google Scholar 

  12. Bustin SA, Benes V, Nolan T, Pfaffl MW . Quantitative real-time RT-PCR – a perspective. J Mol Endocrinol 2005; 34: 597–601.

    Article  CAS  PubMed  Google Scholar 

  13. Hughes TP, Deininger MW, Hochhaus A, Branford S, Radich JP, Kaeda J et al. Monitoring CML patients responding to treatment with tyrosine kinase inhibitors – review and recommendations for ‘harmonizing’ current methodology for detecting BCR-ABL transcripts and kinase domain mutations and for expressing results. Blood 2006; 108: 28–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bustin SA, Nolan T . Pitfalls of quantitative real-time reverse-transcription polymerase chain reaction. J Biomol Tech 2004; 15: 155–166.

    PubMed  PubMed Central  Google Scholar 

  15. Hughes TP, Branford S . Monitoring disease response. In: Melo JV, Goldman JM (eds) Myeloproliferative Disorders. Hematologic Malignancies. Springer-Verlag: Berlin, Heidelberg, 2006, (in press).

    Google Scholar 

  16. Gabert J, Beillard E, van der Velden VH, Bi W, Grimwade D, Pallisgaard N et al. Standardization and quality control studies of ‘real-time’ quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia – a Europe Against Cancer program. Leukemia 2003; 17: 2318–2357.

    Article  CAS  PubMed  Google Scholar 

  17. Freeman WM, Walker SJ, Vrana KE . Quantitative RT-PCR: pitfalls and potential. Biotechniques 1999; 26: 112–122, 124.

    Article  CAS  PubMed  Google Scholar 

  18. Stahlberg A, Hakansson J, Xian X, Semb H, Kubista M . Properties of the reverse transcription reaction in mRNA quantification. Clin Chem 2004; 50: 509–515.

    Article  CAS  PubMed  Google Scholar 

  19. Beillard E, Pallisgaard N, van der Velden VH, Bi W, Dee R, van der Schoot E et al. Evaluation of candidate control genes for diagnosis and residual disease detection in leukemic patients using ‘real-time’ quantitative reverse-transcriptase polymerase chain reaction (RQ-PCR) – a Europe against cancer program. Leukemia 2003; 17: 2474–2486.

    Article  CAS  PubMed  Google Scholar 

  20. Stahlberg A, Kubista M, Pfaffl M . Comparison of reverse transcriptases in gene expression analysis. Clin Chem 2004; 50: 1678–1680.

    Article  CAS  PubMed  Google Scholar 

  21. Ginzinger DG . Gene quantification using real-time quantitative PCR: an emerging technology hits the mainstream. Experimental Hematology 2002; 30: 503–512.

    Article  CAS  PubMed  Google Scholar 

  22. Marino JH, Cook P, Miller KS . Accurate and statistically verified quantification of relative mRNA abundances using SYBR Green I and real-time RT-PCR. J Immunol Methods 2003; 283: 291–306.

    Article  CAS  PubMed  Google Scholar 

  23. Souaze F, Ntodou-Thome A, Tran CY, Rostene W, Forgez P . Quantitative RT-PCR: limits and accuracy. Biotechniques 1996; 21: 280–285.

    Article  CAS  PubMed  Google Scholar 

  24. Hughes T, Branford S . Molecular monitoring of chronic myeloid leukemia. Semin Hematol 2003; 40: 62–68.

    Article  CAS  PubMed  Google Scholar 

  25. Rasmussen RP . Quantification on the LightCycler. In: Meuer S, Wittwer CT, Nakagawara K (eds). Rapid Cycle Real Time RT-PCR, Methods and Applications. Spinger Press: Heidelberg, 2001, pp 21–34.

    Chapter  Google Scholar 

  26. Tichopad A, Dilger M, Schwarz G, Pfaffl MW . Standardized determination of real-time PCR efficiency from a single reaction set-up. Nucleic Acids Res 2003; 31: e122.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Liu W, Saint DA . Validation of a quantitative method for real time PCR kinetics. Biochem Biophys Res Commun 2002; 294: 347–353.

    Article  CAS  PubMed  Google Scholar 

  28. Thompson M, Wood R . Harmonized guidelines for internal quality control in analytical chemistry laboratories (Technical Report). Pure Appl Chem 1995; 67: 649.

    Article  CAS  Google Scholar 

  29. Branford S, Hughes T . Diagnosis and monitoring of chronic myeloid leukemia by qualitative and quantitative RT-PCR. Methods Mol Med 2006; 125: 69–92.

    CAS  PubMed  Google Scholar 

  30. Cross NC, Hughes TP, Feng L, O'Shea P, Bungey J, Marks DI et al. Minimal residual disease after allogeneic bone marrow transplantation for chronic myeloid leukaemia in first chronic phase: correlations with acute graft-versus-host disease and relapse. Br J Haematol 1993; 84: 67–74.

    Article  CAS  PubMed  Google Scholar 

  31. Cross NC, Feng L, Chase A, Bungey J, Hughes TP, Goldman JM . Competitive polymerase chain reaction to estimate the number of BCR-ABL transcripts in chronic myeloid leukemia patients after bone marrow transplantation. Blood 1993; 82: 1929–1936.

    CAS  PubMed  Google Scholar 

  32. Hughes TP, Morgan GJ, Martiat P, Goldman JM . Detection of residual leukemia after bone marrow transplant for chronic myeloid leukemia: role of polymerase chain reaction in predicting relapse. Blood 1991; 77: 874–878.

    CAS  PubMed  Google Scholar 

  33. Westgard JO, Barry PL, Hunt MR, Groth T . A multi-rule Shewhart chart for quality control in clinical chemistry. Clin Chem 1981; 27: 493–501.

    CAS  PubMed  Google Scholar 

  34. Thompson M, Wood R . The international harmonized protocol for the proficiency testing of (chemical) analytical laboratories (Technical Report). Pure Appl Chem 1993; 65: 2123.

    Article  CAS  Google Scholar 

  35. Branford S, Rudzki Z, Parkinson I, Grigg A, Taylor K, Seymour JF et al. Real-time quantitative PCR analysis can be used as a primary screen to identify patients with CML treated with imatinib who have BCR-ABL kinase domain mutations. Blood 2004; 104: 2926–2932.

    Article  CAS  PubMed  Google Scholar 

  36. Bishop GA, Rokahr KL, Lowes M, McGuinness PH, Napoli J, DeCruz DJ et al. Quantitative reverse transcriptase-PCR amplification of cytokine mRNA in liver biopsy specimens using a non-competitive method. Immunol Cell Biol 1997; 75: 142–147.

    Article  CAS  PubMed  Google Scholar 

  37. van der Velden VH, Hochhaus A, Cazzaniga G, Szczepanski T, Gabert J, van Dongen JJ . Detection of minimal residual disease in hematologic malignancies by real-time quantitative PCR: principles, approaches, and laboratory aspects. Leukemia 2003; 17: 1013–1034.

    Article  CAS  PubMed  Google Scholar 

  38. Schmittgen TD, Zakrajsek BA, Mills AG, Gorn V, Singer MJ, Reed MW . Quantitative reverse transcription-polymerase chain reaction to study mRNA decay: comparison of endpoint and real-time methods. Anal Biochem 2000; 285: 194–204.

    Article  CAS  PubMed  Google Scholar 

  39. Livak KJ, Schmittgen TD . Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 2001; 25: 402–408.

    Article  CAS  PubMed  Google Scholar 

  40. Baccarani M, Saglio G, Goldman J, Hochhaus A, Simonsson B, Appelbaum F et al. Evolving concepts in the management of chronic myeloid leukemia. Recommendations from an expert panel on behalf of the European Leukemianet. Blood 2006, blood-2006-2002-005686.

  41. Tietz NW . Accuracy in clinical chemistry – does anybody care? Clin Chem 1994; 40: 859–861.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from Novartis Pharmaceuticals and the European LeukemiaNet.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Branford.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Branford, S., Cross, N., Hochhaus, A. et al. Rationale for the recommendations for harmonizing current methodology for detecting BCR-ABL transcripts in patients with chronic myeloid leukaemia. Leukemia 20, 1925–1930 (2006). https://doi.org/10.1038/sj.leu.2404388

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404388

Keywords

This article is cited by

Search

Quick links