Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Megakaryocytic dysfunction in myelodysplastic syndromes and idiopathic thrombocytopenic purpura is in part due to different forms of cell death

Abstract

Platelet production requires compartmentalized caspase activation within megakaryocytes. This eventually results in platelet release in conjunction with apoptosis of the remaining megakaryocyte. Recent studies have indicated that in low-risk myelodysplastic syndromes (MDS) and idiopathic thrombocytopenic purpura (ITP), premature cell death of megakaryocytes may contribute to thrombocytopenia. Different cell death patterns have been identified in megakaryocytes in these disorders. Growing evidence suggests that, besides apoptosis, necrosis and autophagic cell death, may also be programmed. Therefore, programmed cell death (PCD) can be classified in apoptosis, a caspase-dependent process, apoptosis-like, autophagic and necrosis-like PCD, which are predominantly caspase-independent processes. In MDS, megakaryocytes show features of necrosis-like PCD, whereas ITP megakaryocytes demonstrate predominantly characteristics of apoptosis-like PCD (para-apoptosis). Triggers for these death pathways are largely unknown. In MDS, the interaction of Fas/Fas-ligand might be of importance, whereas in ITP antiplatelet autoantibodies recognizing common antigens on megakaryocytes and platelets might be involved. These findings illustrate that cellular death pathways in megakaryocytes are recruited in both physiological and pathological settings, and that different forms of cell death can occur in the same cell depending on the stimulus and the cellular context. Elucidation of the underlying mechanisms might lead to novel therapeutic interventions.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Patel SR, Hartwig JH, Italiano Jr JE . The biogenesis of platelets from megakaryocyte proplatelets. J Clin Invest 2005; 115: 3348–3354.

    Article  CAS  Google Scholar 

  2. Radley JM, Haller CJ . Fate of senescent megakaryocytes in the bone marrow. Br J Haematol 1983; 53: 277–287.

    Article  CAS  Google Scholar 

  3. Zauli G, Vitale M, Falcieri E, Gibellini D, Bassini A, Celeghini C et al. In vitro senescence and apoptotic cell death of human megakaryocytes. Blood 1997; 90: 2234–2243.

    CAS  PubMed  Google Scholar 

  4. De Botton S, Sabri S, Daugas E, Zermati Y, Guidotti JE, Hermine O et al. Platelet formation is the consequence of caspase activation within megakaryocytes. Blood 2002; 100: 1310–1317.

    Article  CAS  Google Scholar 

  5. Edinger AL, Thompson CB . Death by design: apoptosis, necrosis and autophagy. Curr Opin Cell Biol 2004; 16: 663–669.

    Article  CAS  Google Scholar 

  6. Kitanaka C, Kuchino Y . Caspase-independent programmed cell death with necrotic morphology. Cell Death Differ 1999; 6: 508–515.

    Article  CAS  Google Scholar 

  7. Leist M, Jäättelä M . Four deaths and a funeral: from caspases to alternative mechanisms. Nat Rev Mol Cell Biol 2001; 2: 589–598.

    Article  CAS  Google Scholar 

  8. Assunção Guimarães C, Linden R . Programmed cell deaths. Apoptosis and alternative deathstyles. Eur J Biochem 2004; 271: 1638–1650.

    Article  Google Scholar 

  9. Otsuki Y, Li Z, Shibata MA . Apoptotic detection methods – from morphology to gene. Prog Histochem Cytochem 2003; 38: 275–339.

    Article  Google Scholar 

  10. Kroemer G, El-Deiry WS, Golstein P, Peter ME, Vaux D, Vandenabeele P et al. Nomenclature committee on cell death. Classification of cell death: recommendations of the nomenclature committee on cell death. Cell Death Differ 2005; 12: 1463–1467.

    Article  CAS  Google Scholar 

  11. Kroemer G, Jäättelä M . Lysosomes and autophagy in cell death control. Nat Rev Cancer 2005; 5: 886–897.

    Article  CAS  Google Scholar 

  12. Levine B, Yuan J . Autophagy in cell death: an innocent convict? J Clin Invest 2005; 115: 2679–2688.

    Article  CAS  Google Scholar 

  13. Green DR, Kroemer G . Pharmacological manipulation of cell death: clinical applications in sight? J Clin Invest 2005; 115: 2610–2617.

    Article  CAS  Google Scholar 

  14. Parker JE, Mufti GJ . The myelodysplastic syndromes: a matter of life or death. Acta Haematol 2004; 111: 78–99.

    Article  Google Scholar 

  15. Liesveld JL, Jordan CT, Phillips II GL . The hematopoietic stem cell in myelodysplasia. Stem Cells 2004; 22: 590–599.

    Article  Google Scholar 

  16. Yoshida Y, Mufti GJ . Apoptosis and its significance in MDS: controversies revisited. Leuk Res 1999; 23: 777–785.

    Article  CAS  Google Scholar 

  17. Mundle SD . Lingering biologic dilemmas about the status of the progenitor cells in myelodysplasia. Arch Med Res 2003; 34: 515–519.

    Article  CAS  Google Scholar 

  18. Steensma DP, Bennett JM . The myelodysplastic syndromes: diagnosis and treatment. Mayo Clin Proc 2006; 81: 104–130.

    Article  Google Scholar 

  19. Houwerzijl EJ, Blom NR, van der Want JJ, Louwes H, Esselink MT, Smit JW et al. Increased peripheral platelet destruction and caspase-3-independent programmed cell death of bone marrow megakaryocytes in myelodysplastic patients. Blood 2005; 105: 3472–3479.

    Article  CAS  Google Scholar 

  20. Cines DB, Cassileth PA, Kiss JE . Danazol therapy in myelodysplasia. Ann Intern Med 1985; 103: 58–60.

    Article  CAS  Google Scholar 

  21. Bourgeois E, Caulier MT, Rose C, Dupriez B, Bauters F, Fenaux P . Role of splenectomy in the treatment of myelodysplastic syndromes with peripheral thrombocytopenia: a report on six cases. Leukemia 2001; 15: 950–953.

    Article  CAS  Google Scholar 

  22. Hofmann WK, Kalina U, Koschmieder S, Seipelt G, Hoelzer D, Ottmann OG . Defective megakaryocytic development in myelodysplastic syndromes. Leuk Lymphoma 2000; 38: 13–19.

    Article  CAS  Google Scholar 

  23. van Lom K, Houtsmuller AB, van Putten WL, Slater RM, Löwenberg B . Cytogenetic clonality analysis of megakaryocytes in myelodysplastic syndrome by dual-color fluorescence in situ hybridization and confocal laser scanning microscopy. Genes Chromosomes Cancer 1999; 25: 332–338.

    Article  CAS  Google Scholar 

  24. Adams JA, Liu Yin JA, Brereton ML, Briggs M, Burgess R, Hyde K . The in vitro effect of pegylated recombinant human megakaryocyte growth and development factor (PEG rHuMGDF) on megakaryopoiesis in normal subjects and patients with myelodysplasia and acute myeloid leukaemia. Br J Haematol 1997; 99: 139–146.

    Article  CAS  Google Scholar 

  25. Kalina U, Hofmann WK, Koschmieder S, Wagner S, Kauschat D, Hoelzer D et al. Alteration of c-mpl-mediated signal transduction in CD34(+) cells from patients with myelodysplastic syndromes. Exp Hematol 2000; 28: 1158–1163.

    Article  CAS  Google Scholar 

  26. Zwierzina H, Rollinger-Holzinger I, Nuessler V, Herold M, Meng YG . Endogenous serum thrombopoietin concentrations in patients with myelodysplastic syndromes. Leukemia 1998; 12: 59–64.

    Article  CAS  Google Scholar 

  27. Hatfill SJ, Fester ED, Steytler JG . Apoptotic megakaryocyte dysplasia in the myelodysplastic syndromes. Hematol Pathol 1992; 6: 87–93.

    CAS  PubMed  Google Scholar 

  28. Bogdanovic AD, Trpinac DP, Jankovic GM, Bumbasirevic VZ, Obradovic M, Colovic MD . Incidence and role of apoptosis in myelodysplastic syndrome: morphological and ultrastructural assessment. Leukemia 1997; 11: 656–659.

    Article  CAS  Google Scholar 

  29. Shetty V, Hussaini S, Broady-Robinson L, Allampallam K, Mundle S, Borok R et al. Intramedullary apoptosis of hematopoietic cells in myelodysplastic syndrome patients can be massive: apoptotic cells recovered from high-density fraction of bone marrow aspirates. Blood 2000; 96: 1388–1392.

    CAS  PubMed  Google Scholar 

  30. Shetty V, Hussaini S, Alvi S, Joshi L, Shaher A, Dangerfield B et al. Excessive apoptosis, increased phagocytosis, nuclear inclusion bodies and cylindrical confronting cisternae in bone marrow biopsies of myelodysplastic syndrome patients. Br J Haematol 2002; 116: 817–825.

    Article  Google Scholar 

  31. Kurotaki H, Tsushima Y, Nagai K, Yagihashi S . Apoptosis, bcl-2 expression and p53 accumulation in myelodysplastic syndrome, myelodysplastic-syndrome-derived acute myelogenous leukemia and de novo acute myelogenous leukemia. Acta Haematol 2000; 102: 115–123.

    Article  CAS  Google Scholar 

  32. Bouscary D, De Vos J, Guesnu M, Jondeau K, Viguier F, Melle J et al. Fas/Apo-1 (CD95) expression and apoptosis in patients with myelodysplastic syndromes. Leukemia 1997; 11: 839–845.

    Article  CAS  Google Scholar 

  33. Brada SJ, van de Loosdrecht AA, Koudstaal J, de Wolf JT, Vellenga E . Limited numbers of apoptotic cells in fresh paraffin embedded bone marrow samples of patients with myelodysplastic syndrome. Leuk Res 2004; 28: 921–925.

    Article  CAS  Google Scholar 

  34. Li X, Pu Q . Megakaryocytopoiesis and apoptosis in patients with myelodysplastic syndromes. Leuk Lymphoma 2005; 46: 387–391.

    Article  CAS  Google Scholar 

  35. Kitagawa M, Yamaguchi S, Takahashi M, Tanizawa T, Hirokawa K, Kamiyama R . Localization of Fas and Fas ligand in bone marrow cells demonstrating myelodysplasia. Leukemia 1998; 12: 486–492.

    Article  CAS  Google Scholar 

  36. Vanden Berghe T, van Loo G, Saelens X, Van Gurp M, Brouckaert G, Kalai M et al. Differential signaling to apoptotic and necrotic cell death by Fas-associated death domain protein FADD. J Biol Chem 2004; 279: 7925–7933.

    Article  CAS  Google Scholar 

  37. Fuhler GM, Drayer AL, Vellenga E . Decreased phosphorylation of protein kinase B and extracellular signal-regulated kinase in neutrophils from patients with myelodysplasia. Blood 2003; 101: 1172–1180.

    Article  CAS  Google Scholar 

  38. Harker LA . Thrombokinetics in idiopathic thrombocytopenic purpura. Br J Haematol 1970; 19: 95–104.

    Article  CAS  Google Scholar 

  39. Diggs LW, Hewlett JB . A study of the bone marrow from thirty-six patients with idiopathic hemorrhagic (thrombopenic) purpura. Blood 1948; 3: 1090–1104.

    CAS  PubMed  Google Scholar 

  40. Ballem PJ, Segal GM, Stratton JR, Gernsheimer T, Adamson JW, Slichter SJ . Mechanisms of thrombocytopenia in chronic autoimmune thrombocytopenic purpura. Evidence of both impaired platelet production and increased platelet clearance. J Clin Invest 1987; 80: 33–40.

    Article  CAS  Google Scholar 

  41. Louwes H, Zeinali Lathori OA, Vellenga E, de Wolf JT . Platelet kinetic studies in patients with idiopathic thrombocytopenic purpura. Am J Med 1999; 106: 430–434.

    Article  CAS  Google Scholar 

  42. Pisciotta AV, Stefanini M, Dameshek W . Studies on platelets. X. Morphologic characteristics of megakaryocytes by phase contrast microscopy in normals and in patients with idiopathic thrombocytopenic purpura. Blood 1953; 8: 703–723.

    CAS  PubMed  Google Scholar 

  43. Houwerzijl EJ, Blom NR, van der Want JJ, Esselink MT, Koornstra JJ, Smit JW et al. Ultrastructural study shows morphologic features of apoptosis and para-apoptosis in megakaryocytes from patients with idiopathic thrombocytopenic purpura. Blood 2004; 103: 500–506.

    Article  CAS  Google Scholar 

  44. Centurione L, Di Baldassarre A, Zingariello M, Bosco D, Gatta V, Rana RA et al. Increased and pathologic emperipolesis of neutrophils within megakaryocytes associated with marrow fibrosis in GATA-1(low) mice. Blood 2004; 104: 3573–3580.

    Article  CAS  Google Scholar 

  45. Thiele J, Lorenzen J, Manich B, Kvasnicka HM, Zirbes TK, Fischer R . Apoptosis (programmed cell death) in idiopathic (primary) osteo-/myelofibrosis: naked nuclei in megakaryopoiesis reveal features of para-apoptosis. Acta Haematol 1997; 97: 137–143.

    Article  CAS  Google Scholar 

  46. Craddock Jr CG, Adams WS, Perry S, Lawrence JS . The dynamics of platelet production as studied by a depletion technique in normal and irradiated dogs. J Lab Clin Med 1955; 45: 906–919.

    PubMed  Google Scholar 

  47. Zucker-Franklin D, Termin CS, Cooper MC . Structural changes in the megakaryocytes of patients infected with the human immune deficiency virus (HIV-1). Am J Pathol 1989; 134: 1295–1303.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Ucar C, Oren H, Irken G, Ates H, Atabay B, Turker M et al. Investigation of megakaryocyte apoptosis in children with acute and chronic idiopathic thrombocytopenic purpura. Eur J Haematol 2003; 70: 347–352.

    Article  Google Scholar 

  49. McMillan R, Wang L, Tomer A, Nichol J, Pistillo J . Suppression of in vitro megakaryocyte production by antiplatelet autoantibodies from adult patients with chronic ITP. Blood 2004; 103: 1364–1369.

    Article  CAS  Google Scholar 

  50. Ohshima K, Karube K, Shimazaki K, Kamma H, Suzumiya J, Hamasaki M et al. Imbalance between apoptosis and telomerase activity in myelodysplastic syndromes: possible role in ineffective hemopoiesis. Leuk Lymphoma 2003; 44: 1339–1346.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the JK de Cock Foundation and the Dutch Cancer Society (2003–2920).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E J Houwerzijl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Houwerzijl, E., Blom, N., van der Want, J. et al. Megakaryocytic dysfunction in myelodysplastic syndromes and idiopathic thrombocytopenic purpura is in part due to different forms of cell death. Leukemia 20, 1937–1942 (2006). https://doi.org/10.1038/sj.leu.2404385

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404385

Keywords

This article is cited by

Search

Quick links