Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

T Neoplasias

The nuclear oncoprotein TLX1/HOX11 associates with pericentromeric satellite 2 DNA in leukemic T-cells

Abstract

TLX1/HOX11, a DNA-binding homeodomain protein, was originally identified by virtue of its aberrant expression in T-cell leukemia and subsequently found to be crucial for normal spleen development. The precise mechanism of TLX1 function remains poorly understood, although it is known that it can act as both a transcriptional activator and repressor and can downregulate the Aldh1a1 gene in embryonic mouse spleen. Using a whole-genome PCR approach, we show here that TLX1 protein directly interacts with pericentromeric human satellite 2 DNA sequences. Such DNA is known to localize to heterochromatin, which among other roles has been implicated in gene silencing. The interaction was confirmed in vitro and in vivo by gel retardation and chromatin immunoprecipitation assays involving satellite 2 DNA, which contained sequences resembling TLX1 binding sites. Using immunofluorescence microscopy, TLX1 demonstrated a punctate pattern of staining in the nuclei of leukemic T-cells (ALL-SIL). Double labelling indicated that TLX1 colocalized with the centromeric protein CENP-B, demonstrating that the TLX1 foci corresponded to clusters of centromeric DNA. The novel interaction of TLX1 with constitutive heterochromatin adds an additional level of complexity to the intracellular functions of this transcriptional regulator and may have relevance to its roles in transcriptional repression and T-cell immortalization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Dear TN, Sanchez-Garcia I, Rabbitts TH . The HOX11 gene encodes a DNA-binding nuclear transcription factor belonging to a distinct family of homeobox genes. Proc Natl Acad Sci USA 1993; 90: 4431–4435.

    Article  CAS  Google Scholar 

  2. Cheng SH, Mak TW . Molecular characterization of three murine HOX11-related homeobox genes, Tlx-1, -2, and -3, and restricted expression of Tlx-1 during embryogenesis. Dev Growth Differ 1993; 35: 655–663.

    Article  CAS  Google Scholar 

  3. Shirasawa S, Yunker AMR, Roth KA, Brown GA, Horning S, Korsmeyer SJ . Enx (Hox11L1)-deficient mice develop myenteric neuronal hyperplasia and megacolon. Nat Med 1997; 3: 646–650.

    Article  CAS  Google Scholar 

  4. Shirasawa S, Arata A, Onimaru H, Roth KA, Brown GA, Horning S et al. Rnx deficiency results in congenital central hypoventilation. Nat Genet 2000; 24: 287–290.

    Article  CAS  Google Scholar 

  5. Cheng L, Arata A, Mizuguchi R, Qian Y, Karunaratne A, Gray PA et al. Tlx3 and Tlx1 are post-mitotic selector genes determining glutamatergic over GABAergic cell fates. Nat Neurosci 2004; 7: 510–517.

    Article  CAS  Google Scholar 

  6. Hatano M, Roberts CWM, Minden M, Crist WM, Korsmeyer SJ . Deregulation of a homeobox gene, HOX11, by the t(10;14) in T-cell leukemia. Science 1991; 253: 79–82.

    Article  CAS  Google Scholar 

  7. Kennedy MA, Gonzalez-Sarmiento R, Kees UR, Lampert F, Dear N, Boehm T et al. HOX11, a homeobox-containing T-cell oncogene on human chromosome 10q24. Proc Natl Acad Sci USA 1991; 88: 8900–8904.

    Article  CAS  Google Scholar 

  8. Dube ID, Kamel-Reid S, Yuan CC, Lu M, Wu X, Corpus G et al. A novel human homeobox gene lies at the chromosome 10 breakpoint in lymphoid neoplasias with chromosomal translocation t(10;14). Blood 1991; 78: 2996–3003.

    CAS  PubMed  Google Scholar 

  9. Roberts CWM, Shutter JR, Korsmeyer SJ . Hox11 controls the genesis of the spleen. Nature 1994; 368: 747–749.

    Article  CAS  Google Scholar 

  10. Dear TN, Colledge WH, Carlton MBL, Lavenir I, Larson T, Smith AJH et al. The Hox11 gene is essential for cell survival during spleen development. Development 1995; 121: 2909–2915.

    CAS  PubMed  Google Scholar 

  11. Kanzler B, Dear TN . Hox11 acts cell autonomously in spleen development and its absence results in altered cell fate of mesenchymal spleen precursors. Dev Biol 2001; 234: 231–243.

    Article  CAS  Google Scholar 

  12. Ferrando AA, Neuberg DS, Staunton J, Loh ML, Huard C, Raimondi SC et al. Gene expression signatures define novel oncogenic pathways in T-cell acute lymphoblastic leukemia. Cancer Cell 2002; 1: 75–87.

    Article  CAS  Google Scholar 

  13. Kees UR, Heerema NA, Kumar R, Watt PM, Baker DL, La MK et al. Expression of HOX11 in childhood T-lineage acute lymphoblastic leukaemia can occur in the absence of cytogenetic aberration at 10q24: a study from the Children's Cancer Group (CCG). Leukemia 2003; 17: 887–893.

    Article  CAS  Google Scholar 

  14. Bernard OA, Busson-LeConiat M, Ballerini P, Mauchauffe M, Della Valle V, Monni R et al. A new recurrent and specific cryptic translocation, t(5;14)(q35;q32), is associated with expression of the Hox11L2 gene in T acute lymphoblastic leukaemia. Leukemia 2001; 15: 1495–1504.

    Article  CAS  Google Scholar 

  15. Mauvieux L, Leymarie V, Helias C, Perrusson N, Falkenrodt A, Lioure B et al. High incidence of Hox11L2 expression in children with T-ALL. Leukemia 2002; 16: 2417–2422.

    Article  CAS  Google Scholar 

  16. Hawley RG, Fong AZ, Lu M, Hawley TS . The HOX11 homeobox-containing gene of human leukemia immortalizes murine hematopoietic precursors. Oncogene 1994; 9: 1–12.

    CAS  PubMed  Google Scholar 

  17. Hough MR, Reis MD, Singaraja R, Bryce DM, Kamel-Reid S, Dardick I et al. A model for spontaneous B-lineage lymphomas in IgHμ-HOX11 transgenic mice. Proc Natl Acad Sci USA 1998; 95: 13853–13858.

    Article  CAS  Google Scholar 

  18. Keller G, Wall C, Fong AZ, Hawley TS, Hawley RG . Overexpression of HOX11 leads to the immortalization of embryonic precursors with both primitive and definitive hematopoietic potential. Blood 1998; 92: 877–887.

    CAS  PubMed  Google Scholar 

  19. Greene WK, Ford J, Dixon D, Tilbrook PA, Watt PM, Klinken SP et al. Enforced expression of HOX11 is associated with an immature phenotype in J2E erythroid cells. Br J Haematol 2002; 118: 909–917.

    Article  CAS  Google Scholar 

  20. Zhang N, Shen W, Hawley RG, Lu M . HOX11 interacts with CTF1 and mediates hematopoietic precursor cell immortalization. Oncogene 1999; 18: 2273–2279.

    Article  CAS  Google Scholar 

  21. Allen TD, Zhu Y-X, Hawley TS, Hawley RG . TALE homeoproteins as HOX11-interacting partners in T-cell leukemia. Leuk Lymphoma 2000; 39: 241–256.

    Article  CAS  Google Scholar 

  22. Greene WK, Bahn S, Masson N, Rabbitts TH . The T-cell oncogenic protein HOX11 activates Aldh1 expression in NIH 3T3 cells but represses its expression in mouse spleen development. Mol Cell Biol 1998; 18: 7030–7037.

    Article  CAS  Google Scholar 

  23. Koehler K, Franz T, Dear TN . Hox11 is required to maintain normal Wt1 mRNA levels in the developing spleen. Dev Dyn 2000; 218: 201–206.

    Article  CAS  Google Scholar 

  24. Hoffmann K, Dixon DN, Greene WK, Ford J, Taplin R, Kees UR . A microarray model system identifies potential new target genes of the proto-oncogene HOX11. Genes Chromosomes Cancer 2004; 41: 309–320.

    Article  CAS  Google Scholar 

  25. Tang S, Breitman ML . The optimal binding sequence of the Hox11 protein contains a predicted recognition core motif. Nucleic Acids Res 1995; 23: 1928–1935.

    Article  CAS  Google Scholar 

  26. Shimizu H, Kang M, Iitsuka Y, Ichinose M, Tokuhisa T, Hatano M . Identification of an optimal Ncx binding sequence required for transcriptional activation. FEBS Lett 2000; 475: 170–174.

    Article  CAS  Google Scholar 

  27. Minowada J . Leukemia cell lines. Cancer Rev 1988; 10: 1–18.

    Google Scholar 

  28. Kees UR, Ford J, Price PJ, Meyer BF, Herrmann RP . PER-117: a new human ALL cell line with an immature thymic phenotype. Leuk Res 1987; 11: 489–498.

    Article  CAS  Google Scholar 

  29. Kinzler KW, Vogelstein B . Whole genome PCR: application to the identification of sequences bound by gene regulatory proteins. Nucleic Acids Res 1989; 17: 3645–3653.

    Article  CAS  Google Scholar 

  30. Harris SE, Winchester CL, Johnson KJ . Functional analysis of the homeodomain protein SIX5. Nucleic Acids Res 2000; 28: 1871–1878.

    Article  CAS  Google Scholar 

  31. Heidari M, Rice KL, Kees UR, Greene WK . Expression and purification of the human homeodomain oncoprotein HOX11. Protein Expresssion Purif 2002; 25: 313–318.

    Article  CAS  Google Scholar 

  32. Weinmann AS, Bartley SM, Zhang T, Zhang MQ, Farnham PJ . Use of chromatin immunoprecipitation to clone novel E2F target promoters. Mol Cell Biol 2001; 21: 6820–6832.

    Article  CAS  Google Scholar 

  33. Jeanpierre M . Human satellites 2 and 3. Ann Genet 1994; 37: 163–171.

    CAS  PubMed  Google Scholar 

  34. Masson N, Greene WK, Rabbitts TH . Optimal activation of an endogenous gene by HOX11 requires the NH2-terminal 50 amino acids. Mol Cell Biol 1998; 18: 3502–3508.

    Article  CAS  Google Scholar 

  35. Masumoto H, Nakano M, Ohzeki J . The role of CENP-B and alpha-satellite DNA: de novo assembly and epigenetic maintenance of human centromeres. Chromosome Res 2004; 12: 543–556.

    Article  CAS  Google Scholar 

  36. Alcobia I, Dilao R, Parreira L . Spatial associations of centromeres in the nuclei of hematopoietic cells: evidence for cell-type-specific organizational patterns. Blood 2000; 95: 1608–1615.

    CAS  PubMed  Google Scholar 

  37. Beil M, Durschmied D, Paschke S, Schreiner B, Nolte U, Bruel A et al. Spatial distribution patterns of interphase centromeres during retinoic acid-induced differentiation of promyelocytic leukemia cells. Cytometry 2002; 47: 217–225.

    Article  Google Scholar 

  38. Brown KE, Guest SS, Smale ST, Hahm K, Merkenschlager M, Fisher AG . Association of transcriptionally silent genes with Ikaros complexes at centromeric heterochromatin. Cell 1997; 91: 845–854.

    Article  CAS  Google Scholar 

  39. Cobb BS, Morales-Alcelay S, Kleiger G, Brown KE, Fisher AG, Smale ST . Targeting of Ikaros to pericentromeric heterochromatin by direct DNA binding. Genes Dev 2000; 14: 2146–2160.

    Article  CAS  Google Scholar 

  40. Zhang N, Shen W, Ho AD, Lu M . Three distinct domains in the HOX11 homeobox oncoprotein are required for optimal transactivation. Oncogene 1996; 13: 1781–1787.

    CAS  PubMed  Google Scholar 

  41. Owens BM, Zhu YX, Suen TC, Wang PX, Greenblatt JF, Goss PE et al. Specific homeodomain-DNA interactions are required for HOX11-mediated transformation. Blood 2003; 101: 4966–4974.

    Article  CAS  Google Scholar 

  42. Therkelsen AJ, Nielsen A, Kolvraa S . Localisation of the classical DNA satellites on human chromosomes as determined by primed in situ labelling (PRINS). Hum Genet 1997; 100: 322–326.

    Article  CAS  Google Scholar 

  43. Hansen RS, Wijmenga C, Luo P, Stanek AM, Canfield TK, Weemaes CM et al. The DNMT3B DNA methyltransferase gene is mutated in the ICF immunodeficiency syndrome. Proc Natl Acad Sci USA 1999; 96: 14412–14417.

    Article  CAS  Google Scholar 

  44. Hahm K, Cobb BS, McCarty AS, Brown KE, Klug CA, Lee R et al. Helios, a T cell-restricted Ikaros family member that quantitatively associates with Ikaros at centromeric heterochromatin. Genes Dev 1998; 12: 782–796.

    Article  CAS  Google Scholar 

  45. Tang QQ, Lane MD . Activation and centromeric localization of CCAAT/enhancer-binding proteins during the mitotic clonal expansion of adipocyte differentiation. Genes Dev 1999; 13: 2231–2241.

    Article  CAS  Google Scholar 

  46. Francastel C, Magis W, Groudine M . Nuclear relocation of a transactivator subunit precedes target gene activation. Proc Natl Acad Sci USA 2001; 98: 12120–12125.

    Article  CAS  Google Scholar 

  47. Matsuda E, Agata Y, Sugai M, Katakai T, Gonda H, Shimizu A . Targeting of Kruppel-associated box-containing zinc finger proteins to centromeric heterochromatin. Implication for the gene silencing mechanisms. J Biol Chem 2001; 276: 14222–14229.

    Article  CAS  Google Scholar 

  48. Jolly C, Konecny L, Grady DL, Kutskova YA, Cotto JJ, Morimoto RI et al. In vivo binding of active heat shock transcription factor 1 to human chromosome 9 heterochromatin during stress. J Cell Biol 2002; 156: 775–781.

    Article  CAS  Google Scholar 

  49. Shestakova EA, Mansuroglu Z, Mokrani H, Ghinea N, Bonnefoy E . Transcription factor YY1 associates with pericentromeric gamma-satellite DNA in cycling but not in quiescent (G0) cells. Nucleic Acids Res 2004; 32: 4390–4399.

    Article  CAS  Google Scholar 

  50. Cai M, Davis RW . Yeast centromere binding protein CBF1, of the helix-loop-helix protein family, is required for chromosome stability and methionine prototrophy. Cell 1990; 61: 437–446.

    Article  CAS  Google Scholar 

  51. Stoyan T, Gloeckner G, Diekmann S, Carbon J . Multifunctional centromere binding factor 1 is essential for chromosome segregation in the human pathogenic yeast Candida glabrata. Mol Cell Biol 2001; 21: 4875–4888.

    Article  CAS  Google Scholar 

  52. Dernburg AF, Broman KW, Fung JC, Marshall WF, Philips J, Agard DA et al. Perturbation of nuclear architecture by long-distance chromosome interactions. Cell 1996; 85: 745–759.

    Article  CAS  Google Scholar 

  53. Francastel C, Walters MC, Groudine M, Martin DIK . A functional enhancer suppresses silencing of a transgene and prevents its localization close to centromeric heterochromatin. Cell 1999; 99: 259–269.

    Article  CAS  Google Scholar 

  54. Csink AK, Bounoutas A, Griffith ML, Sabl JF, Sage BT . Differential gene silencing by trans-heterochromatin in Drosophila melanogaster. Genetics 2002; 160: 257–269.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Wen J, Huang S, Pack SD, Yu X, Brandt SJ, Noguchi CT . Tal1/SCL binding to pericentromeric DNA represses transcription. J Biol Chem 2005; 280: 12956–12966.

    Article  CAS  Google Scholar 

  56. Brown KE, Baxter J, Graf D, Merkenschlager M, Fisher AG . Dynamic repositioning of genes in the nucleus of lymphocytes preparing for cell division. Mol Cell 1999; 3: 207–217.

    Article  CAS  Google Scholar 

  57. Gasser SM . Positions of potential: nuclear organization and gene expression. Cell 2001; 104: 639–642.

    Article  CAS  Google Scholar 

  58. Fisher AG, Merkenschlager M . Gene silencing, cell fate and nuclear organisation. Curr Opinion Genetics Dev 2002; 12: 193–197.

    Article  CAS  Google Scholar 

  59. Carmo-Fonseca M . The contribution of nuclear compartmentalization to gene regulation. Cell 2002; 108: 513–521.

    Article  CAS  Google Scholar 

  60. Trinh LA, Ferrini R, Cobb BS, Weinmann AS, Hahm K, Ernst P et al. Down-regulation of TDT transcription in CD4(+)CD8(+) thymocytes by Ikaros proteins in direct competition with an Ets activator. Genes Dev 2001; 15: 1817–1832.

    Article  CAS  Google Scholar 

  61. Sabbattini P, Lundgren M, Georgiou A, Chow C, Warnes G, Dillon N . Binding of Ikaros to the lambda5 promoter silences transcription through a mechanism that does not require heterochromatin formation. EMBO J 2001; 20: 2812–2822.

    Article  CAS  Google Scholar 

  62. Suh E, Chen L, Taylor J, Traber PG . A homeodomain protein related to caudal regulates intestine-specific gene transcription. Mol Cell Biol 1994; 14: 7340–7351.

    Article  CAS  Google Scholar 

  63. Jacobson EM, Li P, Leon-del-Rio A, Rosenfeld MG, Aggarwal AK . Structure of Pit-1 POU domain bound to DNA as a dimer: unexpected arrangement and flexibility. Genes Dev 1997; 11: 198–212.

    Article  CAS  Google Scholar 

  64. Kasahara H, Usheva A, Ueyama T, Aoki H, Horikoshi N, Izumo S . Characterization of homo- and heterodimerization of cardiac Csx/Nkx2.5 homeoprotein. J Biol Chem 2001; 276: 4570–4580.

    Article  CAS  Google Scholar 

  65. Quirk J, Brown P . Hesx1 homeodomain protein represses transcription as a monomer and antagonises transactivation of specific sites as a homodimer. J Mol Endocrinol 2002; 28: 193–205.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S Harris and K Johnson for providing a detailed whole genome PCR protocol; J Ford, J Blinco, D Berryman, M Bassami, P Dallas and J Murphy for their technical advice and assistance. This work was supported by grants from the Australian National Health and Medical Research Council (NHMRC; Grant No. 110236) and Murdoch University. MH was the recipient of a PhD scholarship from the Iranian Ministry of Health and Medical Education KLR was supported by an Australian Postgraduate Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W K Greene.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heidari, M., Rice, K., Phillips, J. et al. The nuclear oncoprotein TLX1/HOX11 associates with pericentromeric satellite 2 DNA in leukemic T-cells. Leukemia 20, 304–312 (2006). https://doi.org/10.1038/sj.leu.2404071

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404071

Keywords

This article is cited by

Search

Quick links