Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Therapy-Related Leukemias

Mutations of genes in the receptor tyrosine kinase (RTK)/RAS-BRAF signal transduction pathway in therapy-related myelodysplasia and acute myeloid leukemia

Abstract

Mutations of the FLT3, c-KIT, c-FMS, KRAS, NRAS, BRAF and CEBPA genes in the receptor tyrosine kinase (RTK)/RAS-BRAF signal-transduction pathway are frequent in acute myeloid leukemia (AML). We examined 140 patients with therapy-related myelodysplasia or AML (t-MDS/t-AML) for point mutations of these seven genes. In all, 11 FLT3, two c-KIT, seven KRAS, eight NRAS and three BRAF mutations were identified in 29 patients (21%). All but one patient with a FLT3 mutation presented with t-AML (P=0.0002). Furthermore, FLT3 mutations were significantly associated with previous radiotherapy without chemotherapy (P=0.03), and with a normal karyotype (P=0.004), but inversely associated with previous therapy with alkylating agents (P=0.003) and with −7/7q− (P=0.001). RAS mutations were associated with AML1 point mutations (P=0.046) and with progression from t-MDS to t-AML (P=0.008). Noteworthy, all three patients with BRAF mutations presented as t-AML of M5 subtype with t(9;11)(p22;q23) and MLL-rearrangement (P=0.01). In t-AML RAS/BRAF mutations were significantly associated with a very short survival (P=0.017). Half of the patients with a mutation in the RTK/RAS-BRAF signal-transduction pathway (denoted ‘class-I’ mutations) simultaneously disclosed mutation of a hematopoietic transcription factor (denoted ‘class-II’ mutations) (P=0.046) suggesting their cooperation in leukemogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Deguchi K, Gilliland DG . Cooperativity between mutations in tyrosine kinases and in hematopoietic transcription factors in AML. Leukemia 2002; 16: 740–744.

    Article  CAS  Google Scholar 

  2. Kelly LM, Gilliland DG . Genetics of myeloid leukemias. Annu Rev Genomics Hum Genet 2002; 3: 179–198.

    Article  CAS  Google Scholar 

  3. Blume-Jensen P, Hunter T . Oncogenic kinase signalling. Nature 2001; 411: 355–365.

    Article  CAS  Google Scholar 

  4. Gilliland DG, Griffin JD . The role of FLT3 in hematopoiesis and leukemia. Blood 2002; 100: 1532–1542.

    Article  CAS  Google Scholar 

  5. Stirewalt DL, Radich JP . The role of FLT3 in haematopoietic malignancies. Nat Rev Cancer 2003; 3: 650–665.

    Article  CAS  Google Scholar 

  6. Broudy VC . Stem cell factor in hematopoiesis. Blood 1997; 90: 1345–1364.

    CAS  PubMed  Google Scholar 

  7. Nakao M, Yokota S, Iwai T, Kaneko H, Horiike S, Kashima K et al. Internal tandem duplication of the FLT3 gene found in acute myeloid leukemia. Leukemia 1996; 10: 1911–1918.

    CAS  PubMed  Google Scholar 

  8. Kottaridis PD, Gale RE, Frew ME, Harrison G, Langabeer SE, Belton AA et al. The presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials. Blood 2001; 98: 1752–1759.

    Article  CAS  Google Scholar 

  9. Whitman SP, Archer KJ, Feng L, Baldus C, Becknell B, Carlson BD et al. Absence of the wild-type allele predicts poor prognosis in adult de novo acute myeloid leukemia with normal cytogenetics and the internal tandem duplication of FLT3: a cancer and leukemia group B study. Cancer Res 2001; 61: 7233–7239.

    CAS  PubMed  Google Scholar 

  10. Schnittger S, Schoch C, Dugas M, Kern W, Staib P, Wuchter C et al. Analysis of FLT3 length mutations in 1003 patients with acute myeloid leukemia: correlation to cytogenetics, FAB subtype, and prognosis in the AMLCG study and usefulness as a marker for the detection of minimal residual disease. Blood 2002; 100: 59–66.

    Article  CAS  Google Scholar 

  11. Yamamoto Y, Kiyoi H, Nakano Y, Suzuki R, Kodera Y, Miyawaki S et al. Activating mutation of D835 within the activation loop of FLT3 in human hematologic malignancies. Blood 2001; 97: 2434–2439.

    Article  CAS  Google Scholar 

  12. Beghini A, Peterlongo P, Ripamonti CB, Larizza L, Cairoli R, Morra E et al. C-kit mutations in core binding factor leukemias. Blood 2000; 95: 726–727.

    CAS  PubMed  Google Scholar 

  13. Care RS, Valk PJM, Goodeve AC, Abu-Duhier F . Incidence and prognosis of c-KIT and FLT3 mutations in core binding factor (CBF) acute myeloid leukemias. Br J Haematol 2003; 121: 775–777.

    Article  CAS  Google Scholar 

  14. Beaupre DM, Kurzrock R . RAS and leukemia: from basic mechanisms to gene-directed therapy. J Clin Oncol 1999; 17: 1071–1079.

    Article  CAS  Google Scholar 

  15. Padua RA, Guinn BA, Al-Sabah AI, Smith M, Taylor C, Pettersson T et al. RAS, FMS and p53 mutations and poor clinical outcome in myelodysplasias: a 10-year follow-up. Leukemia 1998; 12: 8879–8892.

    Article  Google Scholar 

  16. Stirewalt DL, Kopecky KJ, Meshinchi S, Appelbaum FR, Slovak ML, Willman CL et al. FLT3, RAS, and TP53 mutations in elderly patients with acute myeloid leukemia. Blood 2001; 97: 3589–3595.

    Article  CAS  Google Scholar 

  17. Meshinchi S, Stirewalt DL, Alonzo TA, Zhang Q, Sweetser DA, Woods WG et al. Activating mutations of RTK/ras signal transduction pathway in pediatric acute myeloid leukemia. Blood 2003; 102: 1474–1479.

    Article  CAS  Google Scholar 

  18. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S et al. Mutation of the BRAF gene in human cancer. Nature 2002; 417: 949–954.

    Article  CAS  Google Scholar 

  19. Lee JW, Soung YH, Park WS, Kim SY, Nam SW, Min WS et al. BRAF mutations in acute leukemias. Leukemia 2004; 18: 170–172.

    Article  CAS  Google Scholar 

  20. Wan PTC, Garnett MJ, Roe SM, Lee S, Niculescu-Duvaz D, Good VM et al. Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell 2004; 116: 855–867.

    Article  CAS  Google Scholar 

  21. Tenen DG, Hromas R, Licht JD, Zhang DE . Transcription factors, normal myeloid development, and leukemia. Blood 1997; 90: 489–519.

    CAS  PubMed  Google Scholar 

  22. Pabst T, Mueller BU, Zhang P, Radomska HS, Narravula S, Schnittger S et al. Dominant-negative mutations of CEBPA, encoding CCAAT/enhancer binding protein-alpha (C/EBPalpha), in acute myeloid leukemia. Nat Genet 2001; 27: 263–270.

    Article  CAS  Google Scholar 

  23. Gombart AF, Hofmann WK, Kawano S, Takeuchi S, Krug U, Kwok SH et al. Mutations in the gene encoding the transcription factor CCAAT/enhancer binding protein alpha in myelodysplastic syndromes and acute myeloid leukemias. Blood 2002; 99: 1332–1340.

    Article  CAS  Google Scholar 

  24. Preudhomme C, Sagot C, Boissel N, Cayuela JM, Tigaud I, de Botton S et al. Favorable prognostic significance of CEBPA mutations in patients with de novo acute myeloid leukemia: a study from the Acute Leukemia French Association (ALFA). Blood 2002; 100: 2717–2723.

    Article  CAS  Google Scholar 

  25. Kiyoi H, Naoe T, Nakano Y, Yokota S, Minami S, Miyawaki S et al. Prognostic implication of FLT3 and N-RAS gene mutations in acute myeloid leukemia. Blood 1999; 93: 307430–307480.

    Google Scholar 

  26. Barjesteh van Waalwijk van Doorn-Khosrovani S, Erpelinck C, Meijer J, van Oosterhoud S, van Putten WL, Valk PJ et al. Biallelic mutations in the CEBPA gene and low CEBPA expression levels as prognostic markers in intermediate-risk AML. Hematol J 2003; 4: 31–40.

    Article  Google Scholar 

  27. Frohling S, Schlenk RF, Stolze I, Bihlmayr J, Benner A, Kreitmeier S et al. CEBPA Mutations in Younger Adults With Acute Myeloid Leukemia and Normal Cytogenetics: Prognostic Relevance and Analysis of Cooperating Mutations. J Clin Oncol 2004; 22: 624–633.

    Article  Google Scholar 

  28. Perentesis JP, Bhatia S, Boyle E, Shao Y, Ou Shu X, Steinbuch M et al. RAS oncogene mutations and outcome of therapy for childhood acute lymphoblastic leukemia. Leukemia 2004; 18: 685–692.

    Article  CAS  Google Scholar 

  29. Pedersen-Bjergaard J, Pedersen M, Roulston D, Philip P . Different genetic pathways in leukemogenesis for patients presenting with therapy-related myelodysplasia and therapy-related acute myeloid leukemia. Blood 1995; 86: 3542–3552.

    CAS  PubMed  Google Scholar 

  30. Pedersen-Bjergaard J, Andersen MK, Christiansen DH, Nerlov C . Genetic pathways in therapy-related myelodysplasia and acute myeloid leukemia. Blood 2002; 99: 1909–1912.

    Article  CAS  Google Scholar 

  31. Qian Z, Fernald AA, Godley LA, Larson RA, Le Beau MM . Expression profiling of CD34+ hematopoietic stem/progenitor cells reveals distinct subtypes of therapy-related acute myeloid leukemia. Proc Natl Acad Sci USA 2002; 99: 14925–14930.

    Article  CAS  Google Scholar 

  32. Smith SM, Le Beau MM, Huo D, Karrison T, Sobecks RM, Anastasi J et al. Clinical-cytogenetic associations in 306 patients with therapy-related myelodysplasia and myeloid leukemia: the University of Chicago series. Blood 2003; 102: 43–52.

    Article  CAS  Google Scholar 

  33. Christiansen DH, Andersen MK, Pedersen-Bjergaard J . Mutations of AML1 are common in therapy-related myelodysplasia following therapy with alkylating agents and are significantly associated with deletion or loss of chromosome arm 7q and with subsequent leukemic transformation. Blood 2004; 104: 1474–1481.

    Article  CAS  Google Scholar 

  34. Christiansen DH, Pedersen-Bjergaard J . Internal tandem duplications of the FLT3 and MLL genes are mainly observed in atypical cases of therapy-related acute myeloid leukemia with a normal karyotype and are unrelated to type of previous therapy. Leukemia 2001; 15: 1848–1851.

    Article  CAS  Google Scholar 

  35. Christiansen DH, Andersen MK, Pedersen-Bjergaard J . Mutations with loss of heterozygosity of p53 are common in therapy-related myelodysplasia and acute myeloid leukemia after exposure to alkylating agents and significantly associated with deletion or loss of 5q, a complex karyotype, and a poor prognosis. J Clin Oncol 2001; 19: 1405–1413.

    Article  CAS  Google Scholar 

  36. Matsuno N, Osato M, Yamashita N, Yanagida M, Nanri T, Fukushima T et al. Dual mutations of the AML1 and FLT3 genes are associated with leukemogenesis in acute myeloblastic leukemia of the M0 subtype. Leukemia 2003; 17: 2492–2499.

    Article  CAS  Google Scholar 

  37. Smith ML, Snaddon J, Neat M, Cambal-Parrales M, Arch R, Lister TA et al. Mutation of BRAF is uncommon in AML FAB type M1 and M2. Leukemia 2003; 17: 274–275.

    Article  CAS  Google Scholar 

  38. Ayton PM, Cleary ML . Molecular mechanisms of leukemogenesis mediated by MLL fusion proteins. Oncogene 2001; 20: 5695–5707.

    Article  CAS  Google Scholar 

  39. Taketani T, Taki T, Sugita K, Furuichi Y, Ishii E, Hanada R et al. FLT3 mutations in the activating loop of tyrosine kinase domain frequently found in infant ALL with MLL rearrangements and pediatric ALL with hyperdiploidy. Blood 2004; 103: 1085–1088.

    Article  CAS  Google Scholar 

  40. Dobson CL, Warren AJ, Pannell R, Forster A, Lavenir I, Corral J et al. The MLL-AF9 gene fusion in mice controls myeloproliferation and specifies acute myeloid leukemogenesis. EMBO J 1999; 18: 3564–3574.

    Article  CAS  Google Scholar 

  41. Dong J, Phelps RG, Qiao R, Yao S, Benard O, Ronai Z et al. BRAF oncogenic mutations correlate with progression rather than initiation of human melanoma. Cancer Res 2003; 63: 3883–3885.

    CAS  PubMed  Google Scholar 

  42. Kamata T, Kang J, Lee T-H, Wojnowski L, Pritchard CA, Leavitt AD . A critical function for B-Raf at multiple stages of myelopoieis. Blood 2005; 106: 833–840.

    Article  CAS  Google Scholar 

  43. Taylor JA, Sandler DP, Bloomfield CD, Shore DL, Ball ED, Neubauer A et al. ras oncogene activation and occupational exposures in acute myeloid leukemia. J Natl Cancer Inst 1992; 84: 1626–1632.

    Article  CAS  Google Scholar 

  44. DeMarini DM, Landi S, Tian D, Hanley NM, Li X, Hu F et al. Lung tumor KRAS and TP53 mutations in nonsmokers reflect exposure to PAH-rich coal combustion emissions. Cancer Res 2001; 61: 6679–6681.

    CAS  PubMed  Google Scholar 

  45. Horsfall MJ, Gordon AJ, Burns PA, Zielenska M, van der Vliet GM, Glickman BW . Mutational specificity of alkylating agents and the influence of DNA repair. Environ Mol Mutagen 1990; 15: 107–122.

    Article  CAS  Google Scholar 

  46. Barletta E, Gorini G, Vineis P, Miligi L, Davico L, Mugnai G et al. RAS gene mutations in patients with acute myeloid leukemia and exposure to chemical agents. Carcinogenesis 2004; 25: 749–755.

    Article  CAS  Google Scholar 

  47. Christiansen DH, Andersen MK, Pedersen-Bjergaard J . Methylation of p15INK4B is common, is associated with deletion of genes on chromosome arm 7q and predicts a poor prognosis in therapy-related myelodysplasia and acute myeloid leukemia. Leukemia 2003; 17: 1813–1819.

    Article  CAS  Google Scholar 

  48. Andersen MK, Christiansen DH, Kirchhoff M, Pedersen-Bjergaard J . Duplication or amplification of chromosome band 11q23, including the unrearranged MLL gene, is a recurrent abnormality in therapy-related MDS and AML, and is closely related to mutation of the TP53 gene and to previous therapy with alkylating agents. Genes Chromosomes Cancer 2001; 31: 33–41.

    Article  CAS  Google Scholar 

  49. Andersen MK, Christiansen DH, Pedersen-Bjergaard J . Amplification or duplication of chromosome band 21q22 with multiple copies of the AML1 gene and mutation of the TP53 gene in therapy-related MDS and AML. Leukemia 2005; 19: 197–200.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are indebted to Pia Bech and Vivian Jensen for excellent technical assistance in the molecular studies and to Inge-Lise Frost Andersen for excellent technical assistance in the FISH analyses. Supported by grants from the Danish Cancer Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D H Christiansen.

Additional information

Supplementary Information

Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christiansen, D., Andersen, M., Desta, F. et al. Mutations of genes in the receptor tyrosine kinase (RTK)/RAS-BRAF signal transduction pathway in therapy-related myelodysplasia and acute myeloid leukemia. Leukemia 19, 2232–2240 (2005). https://doi.org/10.1038/sj.leu.2404009

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404009

Keywords

This article is cited by

Search

Quick links