Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

T-Leukemias

Cyclin D2 dysregulation by chromosomal translocations to TCR loci in T-cell acute lymphoblastic leukemias

Abstract

Strong expression of at least one of the three D-type cyclins is common in human cancers. While the cyclin D1 and D3 genes (CCND1 and CCND3) are recurrently involved in genomic rearrangements, especially in B-cell lymphoid neoplasias, no clear involvement of the cyclin D2 gene (CCND2) has been reported to date. Here, we identified chromosomal translocations targeting the CCND2 locus at 12p13, and the T-cell receptor beta (TCRB) or the TCRA/D loci in T-cell acute lymphoblastic leukemias (T-ALLs). Expression analysis demonstrated dramatic cyclin D2 overexpression in the translocated cases (n=3) compared to other T-ALLs (total, n=89). In order to evaluate dysregulation in T-ALL with respect to normal T-cell differentiation, we analyzed CCND2 expression in normal purified human thymic subpopulations. CCND2 levels were downregulated through progression from the early stages of human T-cell differentiation, further suggesting that the massive and sustained expression in the CCND2-rearranged T-ALL cases was oncogenic. Association with other oncogene expression (TAL1, HOXAs, or TLX3/HOX11L2), NOTCH1 activating mutations, and/or CDKN2A/p16/ARF deletion, showed that cyclin D2 dysregulation could contribute to multi-event oncogenesis in various T-ALL groups. This report is the first clear evidence of a direct involvement of cyclin D2 in human cancer due to recurrent somatic genetic alterations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Pui CH, Relling MV, Downing JR . Acute lymphoblastic leukemia. N Engl J Med 2004; 350: 1535–1548.

    Article  CAS  PubMed  Google Scholar 

  2. Breit TM, Wolvers-Tettero IL, van Dongen JJ . Phenotypic and genotypic characteristics of human early T-cell differentiation: the T-cell acute lymphoblastic leukaemia model. Res Immunol 1994; 145: 139–143, discussion 155-8.

    Article  CAS  PubMed  Google Scholar 

  3. Asnafi V, Beldjord K, Boulanger E, Comba B, Le Tutour P, Estienne MH et al. Analysis of TCR, pT alpha, and RAG-1 in T-acute lymphoblastic leukemias improves understanding of early human T-lymphoid lineage commitment. Blood 2003; 101: 2693–2703.

    Article  CAS  PubMed  Google Scholar 

  4. Ferrando AA, Neuberg DS, Staunton J, Loh ML, Huard C, Raimondi SC et al. Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. Cancer Cell 2002; 1: 75–87.

    Article  CAS  PubMed  Google Scholar 

  5. Soulier J, Clappier E, Cayuela JM, Regnault A, Garcia-Peydro M, Dombret H et al. HOXA genes are included in genetic and biologic networks defining human acute T-cell leukemia (T-ALL). Blood 2005; 106: 274–286.

    Article  CAS  PubMed  Google Scholar 

  6. De Keersmaecker K, Marynen P, Cools J . Genetic insights in the pathogenesis of T-cell acute lymphoblastic leukemia. Haematologica 2005; 90: 1116–1127.

    CAS  PubMed  Google Scholar 

  7. Cayuela JM, Madani A, Sanhes L, Stern MH, Sigaux F . Multiple tumor-suppressor gene 1 inactivation is the most frequent genetic alteration in T-cell acute lymphoblastic leukemia. Blood 1996; 87: 2180–2186.

    CAS  PubMed  Google Scholar 

  8. Weng AP, Ferrando AA, Lee W, Morris JPt, Silverman LB, Sanchez-Irizarry C et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 2004; 306: 269–271.

    Article  CAS  PubMed  Google Scholar 

  9. Rabbitts TH . Chromosomal translocations in human cancer. Nature 1994; 372: 143–149.

    Article  CAS  PubMed  Google Scholar 

  10. Sherr CJ . Mammalian G1 cyclins. Cell 1993; 73: 1059–1065.

    Article  CAS  PubMed  Google Scholar 

  11. Sherr CJ, Roberts JM . Living with or without cyclins and cyclin-dependent kinases. Genes Dev 2004; 18: 2699–2711.

    Article  CAS  PubMed  Google Scholar 

  12. Delmer A, Ajchenbaum-Cymbalista F, Tang R, Ramond S, Faussat AM, Marie JP et al. Overexpression of cyclin D2 in chronic B-cell malignancies. Blood 1995; 85: 2870–2876.

    CAS  PubMed  Google Scholar 

  13. Sicinski P, Donaher JL, Geng Y, Parker SB, Gardner H, Park MY et al. Cyclin D2 is an FSH-responsive gene involved in gonadal cell proliferation and oncogenesis. Nature 1996; 384: 470–474.

    Article  CAS  PubMed  Google Scholar 

  14. Bergsagel PL, Kuehl WM, Zhan F, Sawyer J, Barlogie B, Shaughnessy Jr J . Cyclin D dysregulation: an early and unifying pathogenic event in multiple myeloma. Blood 2005; 106: 296–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Motokura T, Arnold A . Cyclin D and oncogenesis. Curr Opin Genet Dev 1993; 3: 5–10.

    Article  CAS  PubMed  Google Scholar 

  16. Deshpande A, Sicinski P, Hinds PW . Cyclins and cdks in development and cancer: a perspective. Oncogene 2005; 24: 2909–2915.

    Article  CAS  PubMed  Google Scholar 

  17. Rosenberg CL, Wong E, Petty EM, Bale AE, Tsujimoto Y, Harris NL et al. PRAD1, a candidate BCL1 oncogene: mapping and expression in centrocytic lymphoma. Proc Natl Acad Sci USA 1991; 88: 9638–9642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chesi M, Bergsagel PL, Brents LA, Smith CM, Gerhard DS, Kuehl WM . Dysregulation of cyclin D1 by translocation into an IgH gamma switch region in two multiple myeloma cell lines. Blood 1996; 88: 674–681.

    CAS  PubMed  Google Scholar 

  19. Shaughnessy Jr J, Gabrea A, Qi Y, Brents L, Zhan F, Tian E et al. Cyclin D3 at 6p21 is dysregulated by recurrent chromosomal translocations to immunoglobulin loci in multiple myeloma. Blood 2001; 98: 217–223.

    Article  CAS  PubMed  Google Scholar 

  20. Sonoki T, Harder L, Horsman DE, Karran L, Taniguchi I, Willis TG et al. Cyclin D3 is a target gene of t(6;14)(p21.1;q32.3) of mature B-cell malignancies. Blood 2001; 98: 2837–2844.

    Article  CAS  PubMed  Google Scholar 

  21. Qian L, Gong J, Liu J, Broome JD, Koduru PR . Cyclin D2 promoter disrupted by t(12;22)(p13;q11.2) during transformation of chronic lymphocytic leukaemia to non-Hodgkin's lymphoma. Br J Haematol 1999; 106: 477–485.

    Article  CAS  PubMed  Google Scholar 

  22. Le Coniat M, Della Valle V, Marynen P, Berger R . A new breakpoint, telomeric to TEL/ETV6, on the short arm of chromosome 12 in T cell acute lymphoblastic leukemia. Leukemia 1997; 11: 1360–1363.

    Article  CAS  PubMed  Google Scholar 

  23. Heerema NA, Sather HN, Sensel MG, Kraft P, Nachman JB, Steinherz PG et al. Frequency and clinical significance of cytogenetic abnormalities in pediatric T-lineage acute lymphoblastic leukemia: a report from the Children's Cancer Group. J Clin Oncol 1998; 16: 1270–1278.

    Article  CAS  PubMed  Google Scholar 

  24. Douet-Guilbert N, Morel F, Le Bris MJ, Herry A, Le Calvez G, Marion V et al. Cytogenetic studies in T-cell acute lymphoblastic leukemia. Leuk Lymphoma 2004; 45: 287–290.

    Article  PubMed  Google Scholar 

  25. Hoglund M, Johansson B, Pedersen-Bjergaard J, Marynen P, Mitelman F . Molecular characterization of 12p abnormalities in hematologic malignancies: deletion of KIP1, rearrangement of TEL, and amplification of CCND2. Blood 1996; 87: 324–330.

    CAS  PubMed  Google Scholar 

  26. Wlodarska I, La Starza R, Baens M, Dierlamm J, Uyttebroeck A, Selleslag D et al. Fluorescence in situ hybridization characterization of new translocations involving TEL (ETV6) in a wide spectrum of hematologic malignancies. Blood 1998; 91: 1399–1406.

    CAS  PubMed  Google Scholar 

  27. Tosi S, Harbott J, Teigler-Schlegel A, Haas OA, Pirc-Danoewinata H, Harrison CJ et al. t(7;12)(q36;p13), a new recurrent translocation involving ETV6 in infant leukemia. Genes Chromosomes Cancer 2000; 29: 325–332.

    Article  CAS  PubMed  Google Scholar 

  28. Beverloo HB, Panagopoulos I, Isaksson M, van Wering E, van Drunen E, de Klein A et al. Fusion of the homeobox gene HLXB9 and the ETV6 gene in infant acute myeloid leukemias with the t(7;12)(q36;p13). Cancer Res 2001; 61: 5374–5377.

    CAS  PubMed  Google Scholar 

  29. Sicinska E, Aifantis I, Le Cam L, Swat W, Borowski C, Yu Q et al. Requirement for cyclin D3 in lymphocyte development and T cell leukemias. Cancer Cell 2003; 4: 451–461.

    Article  CAS  PubMed  Google Scholar 

  30. Hebert J, Cayuela JM, Berkeley J, Sigaux F . Candidate tumor-suppressor genes MTS1 (p16INK4A) and MTS2 (p15INK4B) display frequent homozygous deletions in primary cells from T- but not from B-cell lineage acute lymphoblastic leukemias. Blood 1994; 84: 4038–4044.

    CAS  PubMed  Google Scholar 

  31. Ferrando AA, Armstrong SA, Neuberg DS, Sallan SE, Silverman LB, Korsmeyer SJ et al. Gene expression signatures in MLL-rearranged T-lineage and B-precursor acute leukemias: dominance of HOX dysregulation. Blood 2003; 102: 262–268.

    Article  CAS  PubMed  Google Scholar 

  32. Asnafi V, Radford-Weiss I, Dastugue N, Bayle C, Leboeuf D, Charrin C et al. CALM-AF10 is a common fusion transcript in T-ALL and is specific to the TCRgammadelta lineage. Blood 2003; 102: 1000–1006.

    Article  CAS  PubMed  Google Scholar 

  33. Speleman F, Cauwelier B, Dastugue N, Cools J, Verhasselt B, Poppe B et al. A new recurrent inversion, inv(7)(p15q34), leads to transcriptional activation of HOXA10 and HOXA11 in a subset of T-cell acute lymphoblastic leukemias. Leukemia 2005; 19: 358–366.

    Article  CAS  PubMed  Google Scholar 

  34. Sherr CJ, McCormick F . The RB and p53 pathways in cancer. Cancer Cell 2002; 2: 103–112.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported from INSERM and Paris 7 University, and by a grant from the Ligue Nationale contre le Cancer (‘Programme Cartes d’Identité des Tumeurs’). We thank the FAB members Marie-Thérèse Daniel and Georges Flandrin for expert morphological evaluation of leukemic samples, and Karine Chemin, Armelle Regnault, Marie-Luisa Toribio and Alain Aurias for helpful contributions and comments. We are grateful to Jean-Christophe Bories, Josée Hebert, and Hugues de Thé for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Soulier.

Additional information

Supplementary Information accompanies the paper on Leukemia website (http://www.nature.com/leu)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clappier, E., Cuccuini, W., Cayuela, JM. et al. Cyclin D2 dysregulation by chromosomal translocations to TCR loci in T-cell acute lymphoblastic leukemias. Leukemia 20, 82–86 (2006). https://doi.org/10.1038/sj.leu.2404008

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404008

Keywords

This article is cited by

Search

Quick links