Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Chronic Lymphocytic Leukemia, Normal T and B cells (CLL)

Evidence for involvement of clonally expanded CD8+ T cells in anticancer immune responses in CLL patients following nonmyeloablative conditioning and hematopoietic cell transplantation

Abstract

We have analyzed the clonotype composition of CD8+ T cells following nonmyeloablative (NMA) conditioning and hematopoietic cell transplantation (HCT), of patients with chronic lymphocytic leukemia (CLL). Consecutive analyses of blood samples taken up to 2 years following HCT, demonstrated that CD8+ T-cell clonality was highly dynamic in the early phases after HCT, but became more stable after 4–5 months. Moreover, donor lymphocyte infusion (DLI) given for disease progression in one of the patients led to establishment of recurrent as well as new T-cell clonotypes. This coincided with disease remission, strongly suggesting that these T cells were engaged with anti-CLL cytotoxicity. To examine the functional capacity of stable clonally expanded T cells after HCT, CD8+ T cells isolated post-transplant from the recipients were stimulated ex vivo with CLL cells and subsequently analyzed by FACS for surface expression of the marker for cytotoxic activity, CD107a. Stimulation with CLL cells indeed led to surface expression of CD107a, and clonotype analyses of sorted cells demonstrated that CD107a positive T cells were stably expanded following HCT. Our data suggest that clonally expanded CD8+ T-cell clones participate in the ongoing T-cell response against CLL cells following HCT with NMA conditioning.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Michallet M, Archimbaud E, Bandini G, Rowlings PA, Deeg HJ, Gahrton G et al. HLA-identical sibling bone marrow transplantation in younger patients with chronic lymphocytic leukemia. European Group for Blood and Marrow Transplantation and the International Bone Marrow Transplant Registry. Ann Intern Med 1996; 124: 311–315.

    Article  CAS  Google Scholar 

  2. Pavletic ZS, Arrowsmith ER, Bierman PJ, Goodman SA, Vose JM, Tarantolo SR et al. Outcome of allogeneic stem cell transplantation for B cell chronic lymphocytic leukemia. Bone Marrow Transplant 2000; 25: 717–722.

    Article  CAS  Google Scholar 

  3. Doney KC, Chauncey T, Appelbaum FR . Allogeneic related donor hematopoietic stem cell transplantation for treatment of chronic lymphocytic leukemia. Bone Marrow Transplant 2002; 29: 817–823.

    Article  CAS  Google Scholar 

  4. Khouri IF, Lee MS, Saliba RM, Andersson B, Anderlini P, Couriel D et al. Nonablative allogeneic stem cell transplantation for chronic lymphocytic leukemia: impact of rituximab on immunomodulation and survival. Exp Hematol 2004; 32: 28–35.

    Article  CAS  Google Scholar 

  5. Sorror ML, Maris MB, Sandmaier BM, Storer BE, Stuart MJ, Hegenbart U et al. Hematopoietic cell transplantation after nonmyeloablative conditioning for advanced chronic lymphocytic leukemia. J Clin Oncol 2005; 23: 3819–3829.

    Article  Google Scholar 

  6. Dreger P, Montserrat E . Autologous and allogeneic stem cell transplantation for chronic lymphocytic leukemia. Leukemia 2002; 16: 985–992.

    Article  CAS  Google Scholar 

  7. Dreger P, Brand R, Hansz J, Milligan D, Corradini P, Finke J et al. Treatment-related mortality and graft-versus-leukemia activity after allogeneic stem cell transplantation for chronic lymphocytic leukemia using intensity-reduced conditioning. Leukemia 2003; 17: 841–848.

    Article  CAS  Google Scholar 

  8. Dreger P, Brand R, Milligan D, Corradini P, Finke J, Lambertenghi DG et al. Reduced-intensity conditioning lowers treatment-related mortality of allogeneic stem cell transplantation for chronic lymphocytic leukemia: a population-matched analysis. Leukemia 2005; 19: 1029–1033.

    Article  CAS  Google Scholar 

  9. Schetelig J, Thiede C, Bornhauser M, Schwerdtfeger R, Kiehl M, Beyer J et al. Evidence of a graft-versus-leukemia effect in chronic lymphocytic leukemia after reduced-intensity conditioning and allogeneic stem-cell transplantation: the Cooperative German Transplant Study Group. J Clin Oncol 2003; 21: 2747–2753.

    Article  CAS  Google Scholar 

  10. Paneesha S, Milligan DW . Stem cell transplantation for chronic lymphocytic leukaemia. Br J Haematol 2005; 128: 145–152.

    Article  CAS  Google Scholar 

  11. Khouri IF, Keating M, Korbling M, Przepiorka D, Anderlini P, O’Brien S et al. Transplant-lite: induction of graft-versus-malignancy using fludarabine-based nonablative chemotherapy and allogeneic blood progenitor-cell transplantation as treatment for lymphoid malignancies. J Clin Oncol 1998; 16: 2817–2824.

    Article  CAS  Google Scholar 

  12. Esteve J, Villamor N, Colomer D, Cervantes F, Campo E, Carreras E et al. Stem cell transplantation for chronic lymphocytic leukemia: different outcome after autologous and allogeneic transplantation and correlation with minimal residual disease status. Leukemia 2001; 15: 445–451.

    Article  CAS  Google Scholar 

  13. Rondon G, Giralt S, Huh Y, Khouri I, Andersson B, Andreeff M et al. Graft-versus-leukemia effect after allogeneic bone marrow transplantation for chronic lymphocytic leukemia. Bone Marrow Transplant 1996; 18: 669–672.

    CAS  PubMed  Google Scholar 

  14. Moreno C, Villamor N, Colomer D, Esteve J, Martino R, Nomdedeu J et al. Allogeneic stem-cell transplantation may overcome the adverse prognosis of unmutated VH gene in patients with chronic lymphocytic leukemia. J Clin Oncol 2005; 23: 3433–3438.

    Article  Google Scholar 

  15. Ritgen M, Stilgenbauer S, von Neuhoff N, Humpe A, Bruggemann M, Pott C et al. Graft-versus-leukemia activity may overcome therapeutic resistance of chronic lymphocytic leukemia with unmutated immunoglobulin variable heavy-chain gene status: implications of minimal residual disease measurement with quantitative PCR. Blood 2004; 104: 2600–2602.

    Article  CAS  Google Scholar 

  16. Campbell JD, Cook G, Holyoake TL . Evolution of bone marrow transplantation – the original immunotherapy. Trends Immunol 2001; 22: 88–92.

    Article  CAS  Google Scholar 

  17. Bleakley M, Riddell SR . Molecules and mechanisms of the graft-versus-leukaemia effect. Nat Rev Cancer 2004; 4: 371–380.

    Article  CAS  Google Scholar 

  18. Hambach L, Goulmy E . Immunotherapy of cancer through targeting of minor histocompatibility antigens. Curr Opin Immunol 2005; 17: 202–210.

    Article  CAS  Google Scholar 

  19. Tseng LH, Lin MT, Hansen JA, Gooley T, Pei J, Smith AG et al. Correlation between disparity for the minor histocompatibility antigen HA-1 and the development of acute graft-versus-host disease after allogeneic marrow transplantation. Blood 1999; 94: 2911–2914.

    CAS  PubMed  Google Scholar 

  20. Goulmy E, Schipper R, Pool J, Blokland E, Falkenburg JH, Vossen J et al. Mismatches of minor histocompatibility antigens between HLA-identical donors and recipients and the development of graft-versus-host disease after bone marrow transplantation. N Engl J Med 1996; 334: 281–285.

    Article  CAS  Google Scholar 

  21. Dighiero G . Unsolved issues in CLL biology and management. Leukemia 2003; 17: 2385–2391.

    Article  CAS  Google Scholar 

  22. thor Straten P, Schrama D, Andersen MH, Becker JC . T cell clonotypes in cancer. Translat Med 2004; 2: 1–11.

    Article  Google Scholar 

  23. Masuko K, Kato S, Hagihara M, Tsuchida F, Takemoto Y, Izawa K et al. Stable clonal expansion of T cells induced by bone marrow transplantation. Blood 1996; 87: 789–799.

    CAS  PubMed  Google Scholar 

  24. Verfuerth S, Peggs KS, Vyas P, Barnett L, O’Reilly RJ, Mackinnon S . Longitudinal monitoring of immune reconstitution by CDR3 size spectratyping after T-cell-depleted allogeneic bone marrow transplant and the effect of donor lymphocyte infusions on T-cell repertoire. Blood 2000; 95: 3990–3995.

    CAS  PubMed  Google Scholar 

  25. Porter DL, June CH . T-cell reconstitution and expansion after hematopoietic stem cell transplantation: ‘T’ it up!. Bone Marrow Transplant 2005; 35: 935–942.

    Article  CAS  Google Scholar 

  26. Petersen SL, Madsen HO, Ryder LP, Svejgaard A, Jakobsen BK, Sengelov H et al. Haematopoietic stem cell transplantation with non-myeloablative conditioning in the outpatient setting: results, complications and admission requirements in a single institution. Br J Haematol 2004; 125: 225–231.

    Article  Google Scholar 

  27. Sullivan KM . Graft-versus-host disease. In: Blume KG, Forman S, Appelbaum FR (eds). Thomas’ Hematopoetic Cell Transplantation. Blackwell Publishing: Oxford, 2004, 635–664.

    Google Scholar 

  28. Petersen SL, Sidorov IA, Russell CA, Dickmeiss E, Vindelov LL . Limiting dilution analysis of interleukin-2 producing helper T-cell frequencies as a tool in allogeneic cell transplantation. Transplantation 2005; in press.

  29. Petersen SL, Madsen HO, Ryder LP, Svejgaard A, Masmas TN, Dickmeiss E et al. Chimerism studies in HLA-identical nonmyeloablative hematopoietic stem cell transplantation point to the donor CD8(+) T-cell count on day+14 as a predictor of acute graft-versus-host disease. Biol Blood Marrow Transplant 2004; 10: 337–346.

    Article  Google Scholar 

  30. Thiede C, Florek M, Bornhauser M, Ritter M, Mohr B, Brendel C et al. Rapid quantification of mixed chimerism using multiplex amplification of short tandem repeat markers and fluorescence detection. Bone Marrow Transplant 1999; 23: 1055–1060.

    Article  CAS  Google Scholar 

  31. Nyvold C, Madsen HO, Ryder LP, Seyfarth J, Engel CA, Svejgaard A et al. Competitive PCR for quantification of minimal residual disease in acute lymphoblastic leukaemia. J Immunol Methods 2000; 233: 107–118.

    Article  CAS  Google Scholar 

  32. thor Straten P, Guldberg P, Grønbæk K, Zeuthen J, Becker JC . In situ T-cell responses against melanoma comprise high numbers of locally expanded T-cell clonotypes. J Immunol 1999; 163: 443–447.

    CAS  PubMed  Google Scholar 

  33. thor Straten P, Becker JC, Zeuthen J, Guldberg P . T-cell receptor clonotype mapping using denaturing gradient gel electrophoresis (DGGE): Analyses of clonal T-cell responses in melanoma. In: Nicholoff B (ed). Melanoma Methods and Protocols. Humana Press Inc.: Totowa, 2001.

    Google Scholar 

  34. Guldberg P, Güttler F . ‘Broad-range’ DGGE for single-step mutation scanning of entire genes: application to human phenylalanine hydroxylase gene. Nucleic Acids Res 1994; 22: 880–881.

    Article  CAS  Google Scholar 

  35. Claret EJ, Alyea EP, Orsini E, Pickett CC, Collins H, Wang Y et al. Characterization of T cell repertoire in patients with graft-versus-leukemia after donor lymphocyte infusion. J Clin Invest 1997; 100: 855–866.

    Article  CAS  Google Scholar 

  36. Tivol E, Komorowski R, Drobyski WR . Emergent autoimmunity in graft-versus-host disease. Blood 2005; 105: 4885–4891.

    Article  CAS  Google Scholar 

  37. Saitoh H, Hirokawa M, Fujishima N, Ichikawa Y, Kawabata Y, Miura I et al. The presence and longevity of peripherally expanded donor-derived TCRalphabeta+ mature T lymphocyte clones after allogeneic bone marrow transplantation for adult myeloid leukemias. Leukemia 2003; 17: 1626–1635.

    Article  CAS  Google Scholar 

  38. Akatsuka Y, Nishida T, Kondo E, Miyazaki M, Taji H, Iida H et al. Identification of a polymorphic gene, BCL2A1, encoding two novel hematopoietic lineage-specific minor histocompatibility antigens. J Exp Med 2003; 197: 1489–1500.

    Article  CAS  Google Scholar 

  39. Marijt WA, Heemskerk MH, Kloosterboer FM, Goulmy E, Kester MG, van der Hoorn MA et al. Hematopoiesis-restricted minor histocompatibility antigens HA-1- or HA-2-specific T cells can induce complete remissions of relapsed leukemia. Proc Natl Acad Sci USA 2003; 100: 2742–2747.

    Article  CAS  Google Scholar 

  40. Spierings E, Wieles B, Goulmy E . Minor histocompatibility antigens – big in tumour therapy. Trends Immunol 2004; 25: 56–60.

    Article  CAS  Google Scholar 

  41. Jaksch M, Mattsson J . The pathophysiology of acute graft-versus-host disease. Scand J Immunol 2005; 61: 398–409.

    Article  CAS  Google Scholar 

  42. Dickinson AM, Wang XN, Sviland L, Vyth-Dreese FA, Jackson GH, Schumacher TN et al. In situ dissection of the graft-versus-host activities of cytotoxic T cells specific for minor histocompatibility antigens. Nat Med 2002; 8: 410–414.

    Article  CAS  Google Scholar 

  43. Introna M, Barbui AM, Golay J, Rambaldi A . Innovative cell-based therapies in onco-hematology: what are the clinical facts? Haematologica 2004; 89: 1253–1260.

    PubMed  Google Scholar 

Download references

Acknowledgements

Supported by the Danish Cancer Society, the Novo Nordisk Foundation, Vilhelm Petersen og Hustrus legat by recommendation by the Novo Foundation, Danish Medical Research Council, and the Danish Foundation for Cancer Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P thor Straten.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kollgaard, T., Petersen, S., Hadrup, S. et al. Evidence for involvement of clonally expanded CD8+ T cells in anticancer immune responses in CLL patients following nonmyeloablative conditioning and hematopoietic cell transplantation. Leukemia 19, 2273–2280 (2005). https://doi.org/10.1038/sj.leu.2403972

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403972

Keywords

This article is cited by

Search

Quick links