Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Mini Review
  • Published:

On the TRAIL of a new therapy for leukemia

Abstract

The cytokine TRAIL (tumor necrosis factor α-related apoptosis-inducing ligand) as well as agonistic antibodies that bind to the TRAIL receptors, death receptor 4 (DR4) and DR5, are undergoing preclinical and early clinical evaluation as potential therapeutic agents for a variety of hematological and nonhematological malignancies. Here, we briefly review the normal biological function of TRAIL, the mechanism of cytotoxicity of TRAIL receptor ligands, and their effects on normal myeloid progenitors, myelodysplastic marrow and leukemic cells, including acute myelogenous leukemia (AML) and chronic lymphocytic leukemia (CLL), in vitro. Recent observations suggesting that DR4 is the predominant receptor for the cytotoxic effects of TRAIL in CLL and that histone deacetylase inhibitors synergize with TRAIL in CLL in vitro are described and discussed. Collectively, the reviewed studies not only illustrate the potential therapeutic usefulness of TRAIL and the agonistic antibodies, but also highlight the need for additional preclinical evaluation of these agents.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Farber S, Diamond LK, Mercer RD, Sylvester RF, Wolff JA . Temporary remissions in acute leukemia in children produced by folic acid antagonist, 4-aminopteroyl-glutamic acid (aminopterin). N Engl J Med 1948; 238: 787–793.

    CAS  PubMed  Google Scholar 

  2. Freireich EJ . Can we conquer cancer in the twenty-first century? Cancer Chemother Pharmacol 2001; 48 (Suppl 1): S4–S10.

    PubMed  Google Scholar 

  3. Pui CH, Evans WE . Acute lymphoblastic leukemia. N Engl J Med 1998; 339: 605–615.

    CAS  PubMed  Google Scholar 

  4. Kantarjian H, O'Brien S, Smith TL . Results of treatment with hyper CVAD, a dose-intensive regimen, in adult acute lymphoblastic leukemia. J Clin Oncol 2000; 18: 547–561.

    CAS  PubMed  Google Scholar 

  5. Litzow MR . Acute lymphoblastic leukemia in adults. Curr Treat Options Oncol 2000; 1: 19–29.

    CAS  PubMed  Google Scholar 

  6. Tallman MS, Gilliland DG, Rowe JM . Drug therapy of acute myeloid leukemia. Blood 2005; 106: 1154–1163.

    CAS  PubMed  Google Scholar 

  7. Lowenberg B, Downing JR, Burnett A . Acute myeloid leukemia. N Engl J Med 1999; 341: 1051–1062.

    CAS  PubMed  Google Scholar 

  8. Druker GJ, Talpaz M, Resta DJ, Peng B, Buchdunger E, Ford JM et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 2001; 344: 1031–1037.

    CAS  PubMed  Google Scholar 

  9. Shah NP, Tran C, Lee FY, Chen P, Norris D, Sawyers CL . Overriding imatinib resistance with a novel ABL kinase inhibitor. Science 2004; 305: 399–401.

    CAS  PubMed  Google Scholar 

  10. Weisberg E, Manley PW, Breitenstein W, Bruggen J, Cowan-Jacob SW, Ray A et al. Characterization of AMN107, a selective inhibitor of native and mutant Bcr-Abl. Cancer Cell 2005; 7: 129–141.

    CAS  PubMed  Google Scholar 

  11. Sawyers CL, Shah NP, Kantarjian HM, Donato N, Nicoll J, Bai SA et al. Hematologic and cytogenetic responses in imatinib-resistant chronic phase chronic myeloid leukemia patients treated with the dual SRC/ABL kinase inhibitor BMS-354825: results from a phase I dose escalation study. Blood 2004; 104: 1.

    Google Scholar 

  12. Shah NP, Nicoll JM, Nagar B, Gorre ME, Paquette RL, Kuriyan J et al. Multiple BCR-ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crisis chronic myeloid leukemia. Cancer Cell 2002; 2: 117–125.

    CAS  PubMed  Google Scholar 

  13. Krause DS, Van Etten RA . Tyrosine kinases as targets for cancer therapy. N Engl J Med 2005; 353: 172–187.

    CAS  PubMed  Google Scholar 

  14. MacFarlane M, Inoue S, Kohlhaas SL, Majid A, Harper N, Kennedy DB et al. Chronic lymphocytic leukemic cells exhibit apoptotic signaling via TRAIL-R1. Cell Death Diff 2005; 12: 773–782.

    CAS  Google Scholar 

  15. Ashkenazi A . Targeting death and decoy receptors of the tumour-necrosis factor superfamily. Nat Rev Cancer 2002; 2: 420–430.

    CAS  PubMed  Google Scholar 

  16. Locksley RM, Killeen N, Lenardo MJ . The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 2001; 104: 487–501.

    CAS  PubMed  Google Scholar 

  17. Wajant H . Death receptors. Essays Biochem 2003; 39: 53–71.

    CAS  PubMed  Google Scholar 

  18. Karin M, Lin A . NF-kappaB at the crossroads of life and death. Nat Immunol 2002; 3: 221–227.

    CAS  PubMed  Google Scholar 

  19. Walczak H, Krammer PH . The CD95 (APO-1/Fas) and the TRAIL (APO-2L) apoptosis systems. Exp Cell Res 2000; 256: 58–66.

    CAS  PubMed  Google Scholar 

  20. Krammer PH . CD95's deadly mission in the immune system. Nature 2000; 407: 789–795.

    CAS  PubMed  Google Scholar 

  21. Smyth MJ, Takeda K, Hayakawa Y, Peschon JJ, van den Brink MR, Yagita H . Nature's TRAIL – on a path to cancer immunotherapy. Immunity 2003; 18: 1–6.

    CAS  PubMed  Google Scholar 

  22. Thorburn A . Death receptor-induced cell killing. Cell Signal 2004; 16: 139–144.

    CAS  PubMed  Google Scholar 

  23. Boatright KM, Renatus M, Scott FL, Sperandio S, Shin H, Pedersen IM et al. A unified model for apical caspase activation. Mol Cell 2003; 11: 529–541.

    CAS  PubMed  Google Scholar 

  24. Chang DW, Xing Z, Capacio VL, Peter ME, Yang X . Interdimer processing mechanism of procaspase-8 activation. EMBO J 2003; 22: 4132–4142.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Kischkel FC, Lawrence DA, Tinel A, LeBlanc H, Virmani A, Schow P et al. Death receptor recruitment of endogenous caspase-10 and apoptosis initiation in the absence of caspase-8. J Biol Chem 2001; 276: 46639–46646.

    CAS  PubMed  Google Scholar 

  26. Milhas D, Cuvillier O, Therville N, Clave P, Thomsen M, Levade T et al. Caspase-10 triggers Bid cleavage and caspase cascade activation in FasL-induced apoptosis. J Biol Chem 2005; 280: 19836–19842.

    CAS  PubMed  Google Scholar 

  27. Wallach D, Varfolomeev EE, Malinin NL, Goltsev YV, Kovalenko AV, Boldin MP . Tumor necrosis factor receptor and Fas signaling mechanisms. Ann Rev Immunol 1999; 17: 331–367.

    CAS  Google Scholar 

  28. Micheau O, Tschopp J . Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 2003; 114: 181–190.

    CAS  PubMed  Google Scholar 

  29. Shi Y . Caspase activation: revisiting the induced proximity model. Cell 2004; 117: 855–858.

    CAS  PubMed  Google Scholar 

  30. Sharp DA, Lawrence DA, Ashkenazi A . Selective knockdown of the long variant of cellular FLICE inhibitory protein augments death receptor-mediated caspase-8 activation and apoptosis. J Biol Chem 2005; 280: 19401–19409.

    CAS  PubMed  Google Scholar 

  31. Chang DW, Xing Z, Pan Y, Algeciras-Schimnich A, Barnhart BC, Yaish-Ohad S et al. c-FLIP(L) is a dual function regulator for caspase-8 activation and CD95-mediated apoptosis. EMBO J 2002; 21: 3704–3714.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Dohrman A, Russell JQ, Cuenin S, Fortner K, Tschopp J, Budd RC . Cellular FLIP long form augments caspase activity and death of T cells through heterodimerization with and activation of caspase-8. J Immunol 2005; 175: 311–318.

    CAS  PubMed  Google Scholar 

  33. Micheau O, Thome M, Schneider P, Holler N, Tschopp J, Nicholson DW et al. The long form of FLIP is an activator of caspase-8 at the Fas death-inducing signaling complex. J Biol Chem 2002; 277: 45162–45171.

    CAS  PubMed  Google Scholar 

  34. Sprick MR, Rieser E, Stahl H, Grosse-Wilde A, Weigand MA, Walczak H . Caspase-10 is recruited to and activated at the native TRAIL and CD95 death-inducing signalling complexes in a FADD-dependent manner but can not functionally substitute caspase-8. EMBO J 2002; 21: 4520–4530.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Jiang Y, Woronicz JD, Liu W, Goeddel DV . Prevention of constitutive TNF receptor 1 signaling by silencer of death domains. Science 1999; 283: 543–546.

    CAS  PubMed  Google Scholar 

  36. Gomez-Angelats M, Cidlowski JA . Protein kinase C regulates FADD recruitment and death-inducing signaling complex formation in Fas/CD-95-induced apoptosis. J Biol Chem 2001; 276: 44944–44952.

    CAS  PubMed  Google Scholar 

  37. Meng XW, Heldebrant MP, Kaufmann SH . Phorbol-12-myristate 13-acetate inhibits death receptor-mediated apoptosis in Jurkat cells by disrupting FADD recruitment. J Biol Chem 2002; 277: 3776–3783.

    CAS  PubMed  Google Scholar 

  38. Harper N, Hughes MA, Farrow SN, Cohen GM, MacFarlane M . Protein kinase C modulates tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis by targeting the apical events of death receptor signaling. J Biol Chem 2003; 278: 44338–44347.

    CAS  PubMed  Google Scholar 

  39. Scaffidi C, Fulda S, Srinivasan A, Friesen C, Li F, Tomaselli KJ et al. Two CD95 (APO-1)/(Fas) signaling pathways. EMBO J 1998; 17: 1675–1687.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Earnshaw WC, Martins LM, Kaufmann SH . Mammalian caspases: structure, activation, substrates and functions during apoptosis. Ann Rev Biochem 1999; 68: 383–424.

    CAS  PubMed  Google Scholar 

  41. Fischer U, Janicke RU, Schulze-Osthoff K . Many cuts to ruin: a comprehensive update of caspase substrates. Cell Death Differ 2003; 10: 76–100.

    CAS  PubMed  Google Scholar 

  42. Samejima K, Earnshaw WC . Trashing the genome: the role of nucleases during apoptosis. Nat Rev Mol Cell Biol 2005; 6: 677–688.

    CAS  PubMed  Google Scholar 

  43. Sun XM, Bratton SB, Butterworth M, MacFarlane M, Cohen GM . Bcl-2 and Bcl-xL inhibit CD95-mediated apoptosis by mitochondrial release of Smac/DIABLO and subsequent inactivation of X-linked inhibitor-of-apoptosis protein. J Biol Chem 2002; 277: 11345–11351.

    CAS  PubMed  Google Scholar 

  44. Salvesen GS, Duckett CS . IAP proteins: blocking the road to death's door. Nat Rev Cell Mol Biol 2002; 3: 401–410.

    CAS  Google Scholar 

  45. Luo X, Budihardjo I, Zou H, Slaughter C, Wang X . Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 1998; 94: 481–490.

    CAS  PubMed  Google Scholar 

  46. Strasser A . The role of BH3-only proteins in the immune system. Nat Rev Immunol 2005; 5: 189–200.

    CAS  PubMed  Google Scholar 

  47. Cory S, Adams JM . The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer 2002; 2: 647–656.

    CAS  PubMed  Google Scholar 

  48. Newmeyer DD, Ferguson-Miller S . Mitochondria: releasing power for life and unleashing the machineries of death. Cell 2003; 112: 481–490.

    CAS  PubMed  Google Scholar 

  49. Green DR, Kroemer G . The pathophysiology of mitochondrial cell death. Science 2004; 305: 626–629.

    CAS  PubMed  Google Scholar 

  50. Lucken-Ardjomande S, Martinou JC . Newcomers in the process of mitochondrial permeabilization. J Cell Sci 2005; 118: 473–483.

    CAS  PubMed  Google Scholar 

  51. Jiang X, Wang X . Cytochrome c-mediated apoptosis. Ann Rev Biochem 2004; 73: 87–106.

    CAS  PubMed  Google Scholar 

  52. Rodriguez J, Lazebnik Y . Caspase-9 and APAF-1 form an active holoenzyme. Genes Dev 1999; 13: 3179–3184.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Renatus M, Stennicke HR, Scott FL, Liddington RC, Salvesen GS . Dimer formation drives the activation of the cell death protease caspase 9. Proc Natl Acad Sci USA 2001; 98: 14250–14255.

    CAS  PubMed  Google Scholar 

  54. Verhagen AM, Vaux DL . Cell death regulation by the mammalian IAP antagonist Diablo/Smac. Apoptosis 2002; 7: 163–166.

    CAS  PubMed  Google Scholar 

  55. Jones AL, Selby P . Clinical applications of tumour necrosis factor. Prog Growth Factor Res 1989; 1: 107–122.

    CAS  PubMed  Google Scholar 

  56. van Der Veen AH, ten Hagen TL, de Wilt JH, van Ijken MG, Eggermont AM . An overview on the use of TNF-alpha: our experience with regional administration and developments towards new opportunities for systemic application. Anticancer Res 2000; 20: 3467–3474.

    CAS  PubMed  Google Scholar 

  57. Eggermont AM, de Wilt JH, ten Hagen TL . Current uses of isolated limb perfusion in the clinic and a model system for new strategies. Lancet Oncol 2003; 4: 429–437.

    PubMed  Google Scholar 

  58. Nagata S . Apoptosis by death factor. Cell 1997; 88: 355–365.

    CAS  PubMed  Google Scholar 

  59. Green DR, Ferguson TA . The role of Fas ligand in immune privilege. Nat Rev Mol Cell Biol 2001; 2: 917–924.

    CAS  PubMed  Google Scholar 

  60. Rodriguez I, Matsuura K, Ody C, Nagata S, Vassali P . Systemic injection of a tripeptide inhibits the intracellular activation of CPP32-like proteases in vivo and fully protects mice against Fas-mediated fulminant liver destruction and death. J Exp Med 1996; 184: 2067–2072.

    CAS  PubMed  Google Scholar 

  61. Yin XM, Wang K, Gross A, Zhao Y, Zinkel S, Klocke B et al. Bid-deficient mice are resistant to Fas-induced hepatocellular apoptosis. Nature 1999; 400: 886–891.

    CAS  PubMed  Google Scholar 

  62. Nagata S . Steering anti-cancer drugs away from the TRAIL. Nat Med 2000; 6: 502–503.

    CAS  PubMed  Google Scholar 

  63. French LE, Tschopp J . Protein-based therapeutic approaches targeting death receptors. Cell Death Differ 2003; 10: 117–123.

    CAS  PubMed  Google Scholar 

  64. Kelley SK, Ashkenazi A . Targeting death receptors in cancer with Apo2L/TRAIL. Curr Opin Pharmacol 2004; 4: 333–339.

    CAS  PubMed  Google Scholar 

  65. Yagita H, Takeda K, Hayakawa Y, Smyth MJ, Okumura K . TRAIL and its receptors as targets for cancer therapy. Cancer Sci 2004; 95: 777–783.

    CAS  PubMed  Google Scholar 

  66. Takeda K, Smyth MJ, Cretney E, Hayakawa Y, Kayagaki N, Yagita H et al. Critical role for tumor necrosis factor-related apoptosis-inducing ligand in immune surveillance against tumor development. J Exp Med 2002; 195: 161–169.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Takeda K, Hayakawa Y, Smyth MJ, Kayagaki N, Yamaguchi N, Kakuta S et al. Involvement of tumor necrosis factor-related apoptosis-inducing ligand in surveillance of tumor metastasis by liver natural killer cells. Nat Med 2001; 7: 94–100.

    CAS  PubMed  Google Scholar 

  68. Smyth MJ, Cretney E, Takeda K, Wiltrout RH, Sedger LM, Kayagaki N et al. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) contributes to interferon gamma-dependent natural killer cell protection from tumor metastasis. J Exp Med 2001; 193: 661–670.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Ashkenazi A, Pai RC, Fong S, Leung S, Lawrence DA, Marsters SA et al. Safety and antitumor activity of recombinant soluble Apo2 ligand. J Clin Invest 1999; 104: 155–162.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Roth W, Isenmann S, Naumann U, Kugler S, Bahr M, Dichgans J et al. Locoregional Apo2L/TRAIL eradicates intracranial human malignant glioma xenografts in athymic mice in the absence of neurotoxicity. Biochem Biophys Res Comm 1999; 265: 479–483.

    CAS  PubMed  Google Scholar 

  71. Ravi R, Jain AJ, Schulick RD, Pham V, Prouser TS, ALlen H et al. Elimination of hepatic metastases of colon cancer cells via p53-independent cross-talk between irinotecan and Apo2 ligand/TRAIL. Cancer Res 2004; 64: 9105–9114.

    CAS  PubMed  Google Scholar 

  72. Jo M, Kim TH, Seol DW, Esplen JE, Dorko K, Billiar TR et al. Apoptosis induced in normal human hepatocytes by tumor necrosis factor-related apoptosis-inducing ligand. Nat Med 2000; 6: 564–567.

    CAS  PubMed  Google Scholar 

  73. Lawrence DA, Shahrokh Z, Marsters S, Achilles K, Shih D, Mounho B et al. Differential hepatocyte toxicity of recombinant Apo21L/TRAIL versions. Nat Med 2001; 7: 383–385.

    CAS  PubMed  Google Scholar 

  74. Ichikawa K, Liu W, Zhao L, Wang Z, Liu D, Ohtsuka T et al. Tumoricidal activity of a novel anti-human DR5 monoclonal antibody without hepatocyte cytotoxicity. Nat Med 2001; 7: 954–960.

    CAS  PubMed  Google Scholar 

  75. Wang S, El-Deiry WS . TRAIL and apoptosis induction by TNF-family death receptors. Oncogene 2003; 22: 8628–8633.

    CAS  PubMed  Google Scholar 

  76. Shankar S, Srivastava RK . Enhancement of therapeutic potential of TRAIL by cancer chemotherapy and irradiation: mechanisms and clinical implications. Drug Resist Updates 2004; 7: 139–156.

    CAS  Google Scholar 

  77. Ashkenazi A, Dixit VM . Apoptosis control by death and decoy receptors. Curr Opin Cell Biol 1999; 11: 255–260.

    CAS  PubMed  Google Scholar 

  78. Ozoren N, El-Deiry WS . Cell surface death receptor signaling in normal and cancer cells. Semin Cancer Biol 2003; 13: 135–147.

    PubMed  Google Scholar 

  79. LeBlanc HN, Ashkenazi A . Apo2L/TRAIL and its death and decoy receptors. Cell Death Diff 2003; 10: 66–75.

    CAS  Google Scholar 

  80. Kim K, Fisher MJ, Xu SQ, el-Deiry WS . Molecular determinants of response to TRAIL in killing of normal and cancer cells. Clin Cancer Res 2000; 6: 335–346.

    CAS  PubMed  Google Scholar 

  81. Clodi K, Wimmer D, Li Y, Goodwin RG, Jaeger U, Mann G et al. Expression of tumour necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) receptors and sensitivity to TRAIL-induced apoptosis in primary B-cell acute lymphoblastic leukaemia cells. Br J Haematol 2000; 111: 580–586.

    CAS  PubMed  Google Scholar 

  82. Wuchter C, Krappmann D, Cai Z, Ruppert V, Scheidereit C, Dorken B et al. In vitro susceptibility to TRAIL-induced apoptosis of acute leukemia cells in the context of TRAIL receptor gene expression and constitutive NF-kappa B activity. Leukemia 2001; 15: 921–928.

    CAS  PubMed  Google Scholar 

  83. Ivanov VN, Bhoumik A, Ronai Z . Death receptors and melanoma resistance to apoptosis. Oncogene 2003; 22: 3152–3161.

    CAS  PubMed  Google Scholar 

  84. Truneh A, Sharma S, Silverman C, Khandekar S, Reddy MP, Deen KC et al. Temperature-sensitive differential affinity of TRAIL for its receptors. J Biol Chem 2000; 275: 23319–23325.

    CAS  PubMed  Google Scholar 

  85. Kelley RF, Totpal K, Lindstrom SH, Mathieu M, Billeci K, Deforge L et al. Receptor-selective mutants of apoptosis-inducing ligand 2/tumor necrosis factor-related apoptosis-inducing ligand reveal a greater contribution of death receptor (DR) 5 than DR4 to apoptosis signaling. J Biol Chem 2005; 280: 2205–2212.

    CAS  PubMed  Google Scholar 

  86. Wu GS, Burns TF, McDonald ER, Jiang W, Meng R, Krantz ID et al. KILLER/DR5 is a DNA damage-inducible p53-regulated death receptor gene. Nat Genet 1997; 17: 141–143.

    CAS  PubMed  Google Scholar 

  87. Wen J, Ramadevi N, Nguyen D, Perkins CL, Worthington E, Bhalla KN . Antileukemic drugs increase death receptor 5 levels and enhance Apo-2L-induced apoptosis of human acute leukemia cells. Blood 2000; 96: 3900–3906.

    CAS  PubMed  Google Scholar 

  88. Johnston JB, Kabore AF, Strutinsky J, Hu X, Paul JT, Kropp DM et al. Role of the TRAIL/APO2-L death receptors in chlorambucil- and fludarabine-induced apoptosis in chronic lymphocytic leukemia. Oncogene 2003; 22: 8356–8369.

    CAS  PubMed  Google Scholar 

  89. LeBlanc H, Lawrence DA, Varfolomeev E, Totpal K, Morlan J, Schow P et al. Tumor-cell resistance to death receptor-induced apoptosis through mutational inactivation of the proapoptotic Bcl-2 homolog Bax. Nat Med 2002; 8: 274–281.

    CAS  PubMed  Google Scholar 

  90. Li L, Thomas RM, Suzuki H, De Brabander JK, Wang X, Harran PG . A small molecule Smac mimic potentiates TRAIL- and TNFalpha-mediated cell death. Science 2004; 305: 1471–1474.

    CAS  PubMed  Google Scholar 

  91. Henson ES, Gibson EM, Villanueva J, Bristow NA, Haney N, Gibson SB . Increased expression of Mcl-1 is responsible for the blockage of TRAIL-induced apoptosis mediated by EGF/ErbB1 signaling pathway. J Cell Biochem 2003; 89: 1177–1192.

    CAS  PubMed  Google Scholar 

  92. Taniai M, Grambihler A, Higuchi H, Werneburg N, Bronk SF, Farrugia DJ et al. Mcl-1 mediates tumor necrosis factor-related apoptosis-inducing ligand resistance in human cholangiocarcinoma cells. Cancer Res 2004; 64: 3517–3524.

    CAS  PubMed  Google Scholar 

  93. Zhang XD, Borrow JM, Zhang XY, Nguyen T, Hersey P . Activation of ERK1/2 protects melanoma cells from TRAIL-induced apoptosis by inhibiting Smac/DIABLO release from mitochondria. Oncogene 2003; 22: 2869–2881.

    CAS  PubMed  Google Scholar 

  94. Zhang L, Fang B . Mechanisms of resistance to TRAIL-induced apoptosis in cancer. Cancer Gene Ther 2005; 12: 228–237.

    CAS  PubMed  Google Scholar 

  95. Schulze-Bergkamen H, Brenner D, Krueger A, Suess D, Fas SC, Frey CR et al. Hepatocyte growth factor induces Mcl-1 in primary human hepatocytes and inhibits CD95-mediated apoptosis via Akt. Hepatology 2004; 39: 645–654.

    CAS  PubMed  Google Scholar 

  96. Zang DY, Goodwin RG, Loken MR, Bryant E, Deeg HJ . Expression of tumor necrosis factor-related apoptosis-inducing ligand, Apo2L, and its receptors in myelodysplastic syndrome: effects on in vitro hemopoiesis. Blood 2001; 98: 3058–3065.

    CAS  PubMed  Google Scholar 

  97. Nieda M, Nicol A, Koezuka Y, Kikuchi A, Lapteva N, Tanaka Y et al. TRAIL expression by activated human CD4(+)V alpha 24NKT cells induces in vitro and in vivo apoptosis of human acute myeloid leukemia cells. Blood 2001; 97: 2067–2074.

    CAS  PubMed  Google Scholar 

  98. Plasilova M, Zivny J, Jelinek J, Neuwirtova R, Cermak J, Necas E et al. TRAIL (Apo2L) suppresses growth of primary human leukemia and myelodysplasia progenitors. Leukemia 2002; 16: 67–73.

    CAS  PubMed  Google Scholar 

  99. Mundle SD, Ali A, Cartlidge JD, Reza S, Alvi S, Showel MM et al. Evidence for involvement of tumor necrosis factor-alpha in apoptotic death of bone marrow cells in myelodysplastic syndromes. Am J Hematol 1999; 60: 36–47.

    CAS  PubMed  Google Scholar 

  100. Claessens YE, Park S, Dubart-Kupperschmitt A, Mariot V, Garrido C, Chretien S et al. Rescue of early-stage myelodysplastic syndrome-deriving erythroid precursors by the ectopic expression of a dominant-negative form of FADD. Blood 2005; 105: 4035–4042.

    CAS  PubMed  Google Scholar 

  101. Min YJ, Lee JH, Choi SJ, Chi HS, Lee JS, Kim WK et al. Prognostic significance of Fas (CD95) and TRAIL receptors (DR4/DR5) expression in acute myelogenous leukemia. Leuk Res 2004; 28: 359–365.

    CAS  PubMed  Google Scholar 

  102. Hanada M, Delia D, Aiello A, Stadtmauer E, Reed JC . Bcl-2 gene hypomethylation and high-level expression in B-cell chronic lymphocytic leukemia. Blood 1993; 82: 1820–1828.

    CAS  PubMed  Google Scholar 

  103. Keating MJ, O'Brien S, Albitar M, Lerner S, Plunkett W, Giles F et al. Early results of a chemoimmunotherapy regimen of fludarabine, cyclophosphamide, and rituximab as initial therapy for chronic lymphocytic leukemia. J Clin Oncol 2005; 23: 4079–4088.

    CAS  PubMed  Google Scholar 

  104. Wierda WG, O'Brien S, Wen S, Faderl S, Garcia-Manero G, Thomas D et al. Chemoimmunotherpay with fludarabine, cyclophosphamide, and rituximab for relapsed and refractory chronic lymphocytic leukemia. J Clin Oncol 2005; 23: 4070–4078.

    CAS  PubMed  Google Scholar 

  105. Kay NE, Geyer SM, Lin T, Call TG, Jelinek DF, Bone ND et al. Combination chemotherapy with pentostatin, cyclophosphamide and rituximab induces high rate of remissions including complete responses and achievement of minimal residual disease in previously untreated B-chronic lymphocytic leukemia. Blood 2004; 104: 339.

    Google Scholar 

  106. Shanafelt TD, Geyer SM, Kay NE . Prognosis at diagnosis: integrating molecular biologic insights into clinical practice for patients with CLL. Blood 2004; 103: 1202–1210.

    CAS  PubMed  Google Scholar 

  107. MacFarlane M, Harper N, Snowden RT, Dyer MJ, Barnett GA, Pringle JH et al. Mechanisms of resistance to TRAIL-induced apoptosis in primary B cell chronic lymphocytic leukaemia. Oncogene 2002; 21: 6809–6818.

    CAS  PubMed  Google Scholar 

  108. Inoue S, MacFarlane M, Harper N, Wheat LM, Dyer MJ, Cohen GM . Histone deacetylase inhibitors potentiate TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in lymphoid malignancies. Cell Death Differ 2004; 11 (Suppl 2): S193–S206.

    CAS  PubMed  Google Scholar 

  109. Marks PA, Richon VM, Miller T, Kelly WK . Histone deacetylase inhibitors. Adv Cancer Res 2004; 91: 137–168.

    CAS  PubMed  Google Scholar 

  110. Piekarz R, Bates SE . A review of depsipeptide and other histone deacetylase inhibitors in clinical trials. Curr Pharm Des 2004; 10: 2289–2298.

    CAS  PubMed  Google Scholar 

  111. Bhalla K, List A . Histone deacetylase inhibitors in myelodysplastic syndrome. Best Pract Res Clin Haematol 2004; 17: 595–611.

    CAS  PubMed  Google Scholar 

  112. Drummond DC, Noble CO, Kirpotein DB, Guo Z, Scott GK, Benz CC . Clinical development of histone deacetylase inhibitors as anticancer agents. Annu Rev Pharmacol Toxicol 2005; 45: 495–528.

    CAS  PubMed  Google Scholar 

  113. Phiel CJ, Zhang F, Huang EY, Guenther MG, Lazar MA, Klein PS . Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J Biol Chem 2001; 276: 36734–36741.

    CAS  PubMed  Google Scholar 

  114. Gottlicher M, Minucci S, Zhu P, Kramer OH, Schimpf A, Giavara S et al. Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO J 2001; 20: 6969–6978.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Gurvich N, Tsygankova OM, Meinkoth JL, Klein PS . Histone deacetylase is a target of valproic acid-mediated cellular differentiation. Cancer Res 2004; 64: 1079–1086.

    CAS  PubMed  Google Scholar 

  116. Nebbioso A, Clarke N, Voltz E, Germain E, Ambrosino C, Bontempo P et al. Tumor-selective action of HDAC inhibitors involves TRAIL induction in acute myeloid leukemia cells. Nat Med 2005; 11: 77–84.

    CAS  PubMed  Google Scholar 

  117. Guo F, Sigua C, Tao J, Bali P, George P, Li Y et al. Cotreatment with histone deacetylase inhibitor LAQ824 enhances Apo-2L/tumor necrosis factor-related apoptosis inducing ligand-induced death inducing signaling complex activity and apoptosis of human acute leukemia cells. Cancer Res 2004; 64: 2580–2589.

    CAS  PubMed  Google Scholar 

  118. Nakata S, Yoshida T, Horinaka M, Shiraishi T, Wakada M, Sakai T . Histone deacetylase inhibitors upregulate death receptor 5/TRAIL-R2 and sensitize apoptosis induced by TRAIL/APO2-L in human malignant tumor cells. Oncogene 2004; 23: 6261–6271.

    CAS  PubMed  Google Scholar 

  119. Singh TR, Shankar S, Srivastava RK . HDAC inhibitors enhance the apoptosis-inducing potential of TRAIL in breast carcinoma. Oncogene 2005; 24: 4609–4623.

    CAS  PubMed  Google Scholar 

  120. Schobben F, van der Kleijn E, Gabreels FJ . Pharmacokinetics of di-n-propylacetate in epileptic patients. Eur J Clin Pharmacol 1975; 8: 97–105.

    CAS  PubMed  Google Scholar 

  121. Johannessen SI . Preliminary observations on valproic acid kinetics in patients with epilepsy. Arzneimittelforschung 1977; 27: 1083–1085.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Studies in the our laboratory were supported in part by R01 CA69008. Helpful discussions with Gregory Gores and editorial assistance of Deb Strauss are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S H Kaufmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaufmann, S., Steensma, D. On the TRAIL of a new therapy for leukemia. Leukemia 19, 2195–2202 (2005). https://doi.org/10.1038/sj.leu.2403946

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403946

Keywords

This article is cited by

Search

Quick links