Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

The CD107 mobilization assay: viable isolation and immunotherapeutic potential of tumor-cytolytic NK cells

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

References

  1. Penack O, Gentilini C, Fischer L, Asemissen AM, Scheibenbogen C, Thiel E et al. CD56dimCD16neg cells are responsible for natural cytotoxicíty against tumor targets. Leukemia 2005; 3 March [E-pub ahead of print].

  2. Liu L, Chahroudi A, Silvestri G, Wernett ME, Kaiser WJ, Safrit JT et al. Visualization and quantification of T cell-mediated cytotoxicity using cell-permeable fluorogenic caspase substrates. Nat Med 2002; 8: 185–189.

    Article  CAS  PubMed  Google Scholar 

  3. Brunner KT, Mauel J, Cerottini JC, Chapuis B . Quantitative assay of the lytic action of immune lymphoid cells on 51-Cr-labelled allogeneic target cells in vitro; inhibition by isoantibody and by drugs. Immunology 1968; 14: 181–196.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Rininsland FH, Helms T, Asaad RJ, Boehm BO, Tary-Lehmann M . Granzyme B ELISPOT assay for ex vivo measurements of T cell immunity. J Immunol Methods 2000; 240: 143–155.

    Article  CAS  PubMed  Google Scholar 

  5. Betts MR, Brenchley JM, Price DA, De Rosa SC, Douek DC, Roederer M et al. Sensitive and viable identification of antigen-specific CD8+ T cells by a flow cytometric assay for degranulation. J Immunol Methods 2003; 281: 65–78.

    Article  CAS  PubMed  Google Scholar 

  6. Rubio V, Stuge TB, Singh N, Betts MR, Weber JS, Roederer M et al. Ex vivo identification, isolation and analysis of tumor-cytolytic T cells. Nat Med 2003; 9: 1377–1382.

    Article  CAS  PubMed  Google Scholar 

  7. Peters PJ, Borst J, Oorschot V, Fukuda M, Krahenbuhl O, Tschopp J et al. Cytotoxic T lymphocyte granules are secretory lysosomes, containing both perforin and granzymes. J Exp Med 1991; 173: 1099–1109.

    Article  CAS  PubMed  Google Scholar 

  8. Trapani JA, Smyth MJ . Functional significance of the perforin/granzyme cell death pathway. Nat Rev Immunol 2002; 2: 735–747.

    Article  CAS  PubMed  Google Scholar 

  9. Davis DM, Dustin ML . What is the importance of the immunological synapse? Trends Immunol 2004; 25: 323–327.

    Article  CAS  PubMed  Google Scholar 

  10. Lieberman J . The ABCs of granule-mediated cytotoxicity: new weapons in the arsenal. Nat Rev Immunol 2003; 3: 361–370.

    Article  CAS  PubMed  Google Scholar 

  11. Metkar SS, Wang B, Aguilar-Santelises M, Raja SM, Uhlin-Hansen L, Podack E et al. Cytotoxic cell granule-mediated apoptosis: perforin delivers granzyme B–-serglycin complexes into target cells without plasma membrane pore formation. Immunity 2002; 16: 417–428.

    Article  CAS  PubMed  Google Scholar 

  12. Kuhn JR, Poenie M . Dynamic polarization of the microtubule cytoskeleton during CTL-mediated killing. Immunity 2002; 16: 111–121.

    Article  CAS  PubMed  Google Scholar 

  13. Fukuda M . Lysosomal membrane glycoproteins. Structure, biosynthesis, and intracellular trafficking. J Biol Chem 1991; 266: 21327–21330.

    CAS  PubMed  Google Scholar 

  14. Chang MH, Karageorgos LE, Meikle PJ . CD107a (LAMP-1) and CD107b (LAMP-2). J Biol Regul Homeost Agents 2002; 16: 147–151.

    CAS  PubMed  Google Scholar 

  15. Andrejewski N, Punnonen EL, Guhde G, Tanaka Y, Lullmann-Rauch R, Hartmann D et al. Normal lysosomal morphology and function in LAMP-1-deficient mice. J Biol Chem 1999; 274: 12692–12701.

    Article  CAS  PubMed  Google Scholar 

  16. Kiessling R, Klein E, Wigzell H . ‘Natural’ killer cells in the mouse. I. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype. Eur J Immunol 1975; 5: 112–117.

    Article  CAS  PubMed  Google Scholar 

  17. Herberman RB, Nunn ME, Lavrin DH . Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic acid allogeneic tumors. I. Distribution of reactivity and specificity. Int J Cancer 1975; 16: 216–229.

    Article  CAS  PubMed  Google Scholar 

  18. Trinchieri G . Biology of natural killer cells. Adv Immunol 1989; 47: 187–376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lanier LL . NK cell receptors. Annu Rev Immunol 1998; 16: 359–393.

    Article  CAS  PubMed  Google Scholar 

  20. Moretta A, Bottino C, Millo R, Biassoni R . HLA-specific and non-HLA-specific human NK receptors. Curr Top Microbiol Immunol 1999; 244: 69–84.

    CAS  PubMed  Google Scholar 

  21. Vilches C, Parham P . KIR: Diverse, Rapidly Evolving Receptors of Innate and Adaptive Immunity. Annu Rev Immunol 2002; 20: 217–251.

    Article  CAS  PubMed  Google Scholar 

  22. Valiante NM, Uhrberg M, Shilling HG, Lienert-Weidenbach K, Arnett KL, D'Andrea A et al. Functionally and structurally distinct NK cell receptor repertoires in the peripheral blood of two human donors. Immunity 1997; 7: 739–751.

    Article  CAS  PubMed  Google Scholar 

  23. Algarra I, Collado A, Garrido F . Altered MHC class I antigens in tumors. Int J Clin Lab Res 1997; 27: 95–102.

    Article  CAS  PubMed  Google Scholar 

  24. Biron CA, Nguyen KB, Pien GC, Cousens LP, Salazar-Mather TP . Natural killer cells in antiviral defense: function and regulation by innate cytokines. Annu Rev Immunol 1999; 17: 189–220.

    Article  CAS  PubMed  Google Scholar 

  25. Ruggeri L, Capanni M, Casucci M, Volpi I, Tosti A, Perruccio K et al. Role of natural killer cell alloreactivity in HLA-mismatched hematopoietic stem cell transplantation. Blood 1999; 94: 333–339.

    CAS  PubMed  Google Scholar 

  26. Ruggeri L, Capanni M, Urbani E, Perruccio K, Shlomchik WD, Tosti A et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 2002; 295: 2097–2100.

    Article  CAS  PubMed  Google Scholar 

  27. Cudkowicz G, Bennett M . Peculiar immunobiology of bone marrow allografts. I. Graft rejection by irradiated responder mice. J Exp Med 1971; 134: 83–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Peters C . Another step forward towards improved outcome after HLA-haploidentical stem cell transplantation. Leukemia 2004; 18: 1769–1771.

    Article  CAS  PubMed  Google Scholar 

  29. Rosenberg SA, Lotze MT, Muul LM, Chang AE, Avis FP, Leitman S et al. A progress report on the treatment of 157 patients with advanced cancer using lymphokine-activated killer cells and interleukin-2 or high-dose interleukin-2 alone. N Engl J Med 1987; 316: 889–897.

    Article  CAS  PubMed  Google Scholar 

  30. Burns LJ, Weisdorf DJ, DeFor TE, Vesole DH, Repka TL, Blazar BR et al. IL-2-based immunotherapy after autologous transplantation for lymphoma and breast cancer induces immune activation and cytokine release: a phase I/II trial. Bone Marrow Transplant 2003; 32: 177–186.

    Article  CAS  PubMed  Google Scholar 

  31. Passweg JR, Tichelli A, Meyer-Monard S, Heim D, Stern M, Kuhne T et al. Purified donor NK-lymphocyte infusion to consolidate engraftment after haploidentical stem cell transplantation. Leukemia 2004; 18: 1835–1838.

    Article  CAS  PubMed  Google Scholar 

  32. Miller JS, Soignier Y, Panoskaltsis-Mortari A, McNearney SA, Yun GH, Fautsch SK et al. Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in cancer patients. Blood 2005, [E-pub ahead of print] doi: 10.1182/Blood-2004-07-7974.

  33. Perussia B, Trinchieri G . Inactivation of natural killer cell cytotoxic activity after interaction with target cells. J Immunol 1981; 126: 754–758.

    CAS  PubMed  Google Scholar 

  34. Iyengar R, Handgretinger R, Babarin-Dorner A, Leimig T, Otto M, Geiger TL et al. Purification of human natural killer cells using a clinical-scale immunomagnetic method. Cytotherapy 2003; 5: 479–484.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Deutsche Krebshilfe.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Uhrberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uhrberg, M. The CD107 mobilization assay: viable isolation and immunotherapeutic potential of tumor-cytolytic NK cells. Leukemia 19, 707–709 (2005). https://doi.org/10.1038/sj.leu.2403705

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403705

This article is cited by

Search

Quick links