Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Growth Factors

An acquired G-CSF receptor mutation results in increased proliferation of CMML cells from a patient with severe congenital neutropenia

Abstract

Severe congenital neutropenia (CN) is characterized by a maturation arrest of myelopoiesis at the promyelocyte stage. Treatment with pharmacological doses of recombinant human granulocyte colony-stimulating factor (rh-G-CSF) stimulates neutrophil production and decreases the risk of major infectious complications. However, approximately 15% of CN patients develop myeloid malignancies that have been associated with somatic mutations in the G-CSF receptor (G-CSFR) and RAS genes as well as with acquired monosomy 7. We report a CN patient with chronic myelomonocytic leukemia (CMML) who never received rh-G-CSF. Molecular analysis demonstrated a somatic G-CSFR mutation (C2390T), which led to expression of a truncated G-CSFR protein in the CMML. Normal G-CSFR expression was unexpectedly absent in primary and cultured CMML. In addition, CMML cells showed monosomy 7 and an oncogenic NRAS mutation. In vitro culture revealed a G-CSF-dependent proliferation of CMML cells, which subsequently differentiated along the monocytic/macrophage lineage. Our results provide direct evidence for the in vivo expression of a truncated G-CSFR in leukemic cells, which emerged in the absence of rh-G-CSF treatment and transduces proliferative signals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Welte K, Boxer LA . Severe chronic neutropenia: pathophysiology and therapy. Semin Hematol 1997; 34: 267–278.

    CAS  PubMed  Google Scholar 

  2. Zeidler C, Boxer L, Dale DC, Freedman MH, Kinsey S, Welte K . Management of Kostmann syndrome in the G-CSF era. Br J Haematol 2000; 109: 490–495.

    Article  CAS  PubMed  Google Scholar 

  3. Bonilla MA, Gillio AP, Ruggeiro M, Kernan NA, Brochstein JA, Abboud M et al. Effects of recombinant human granulocyte colony-stimulating factor on neutropenia in patients with congenital agranulocytosis. N Engl J Med 1989; 320: 1574–1580.

    Article  CAS  PubMed  Google Scholar 

  4. Welte K, Gabrilove J, Bronchud MH, Platzer E, Morstyn G . Filgrastim (r-metHuG-CSF): the first 10 years. Blood 1996; 88: 1907–1929.

    CAS  PubMed  Google Scholar 

  5. Freedman M, Bonilla MA, Fier C, Bolyard AA, Scarlata D, Boxer LA et al. Myelodysplasia syndrome and acute myeloid leukemia in patients with congenital neutropenia receiving G-CSF therapy. Blood 2000; 96: 429–436.

    CAS  PubMed  Google Scholar 

  6. Gilman PA, Jackson DP, Guild HG . Congenital agranulocytosis: prolonged survival and terminal acute leukemia. Blood 1970; 36: 576–585.

    CAS  PubMed  Google Scholar 

  7. Rosen RB, Kang SJ . Congenital agranulocytosis terminating in acute myelomonocytic leukemia. J Pediatr 1979; 94: 406–408.

    Article  CAS  PubMed  Google Scholar 

  8. Dong F, Hoefsloot LH, Schelen AM, Broeders LCAM, Meijer Y, Veerman AJP et al. Identification of a nonsense mutation in the granulocyte-colony-stimulating factor receptor in severe congenital neutropenia. Proc Natl Acad Sci USA 1994; 91: 4480–4484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tidow N, Pilz C, Teichmann B, Müller-Brechlin A, Germeshausen M, Kasper B et al. Clinical relevance of point mutations in the cytoplasmic domain of the granulocyte colony-stimulating factor receptor gene in patients with severe congenital neutropenia. Blood 1997; 89: 2369–2375.

    CAS  PubMed  Google Scholar 

  10. Germeshausen M, Ballmaier M, Welte K . Implications of mutations in hematopoietic growth factor receptor genes in congenital cytopenias. Ann NY Acad Sci 2001; 938: 305–320; discussion 20, 21.

    Article  CAS  PubMed  Google Scholar 

  11. Tschan CA, Pilz C, Zeidler C, Welte K, Germeshausen M . Time course of increasing numbers of mutations in the granulocyte colony-stimulating factor receptor gene in a patient with congenital neutropenia who developed leukemia. Blood 2001; 97: 1882–1884.

    Article  CAS  PubMed  Google Scholar 

  12. Dong F, Russell KB, Tidow N, Welte K, Löwenberg B, Touw IP . Mutations in the gene for the granulocyte colony-stimulating-factor receptor in patients with acute myeloid leukemia preceded by severe congenital neutropenia. N Engl J Med 1995; 333: 487–493.

    Article  CAS  PubMed  Google Scholar 

  13. Hunter MG, Avalos BR . Granulocyte colony-stimulating factor receptor mutations in severe congenital neutropenia transforming to acute myelogenous leukemia confer resistance to apoptosis and enhance cell survival. Blood 2000; 95: 2132–2137.

    CAS  PubMed  Google Scholar 

  14. McLemore ML, Poursine-Laurent J, Link DC . Increased granulocyte colony-stimulating factor responsiveness but normal resting granulopoiesis in mice carrying a targeted granulocyte colony-stimulating factor receptor mutation derived from a patient with severe congenital neutropenia. J Clin Invest 1998; 102: 483–492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hermans MHA, Antonissen C, Ward AC, Mayen AEM, Ploemacher RE, Touw IP . Sustained receptor activation and hyperproliferation in response to granulocyte colony-stimulating factor (G-CSF) in mice with a severe congenital neutropenia/acute myeloid leukemia-derived mutation in the G-CSF receptor gene. J Exp Med 1999; 189: 683–692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kalra R, Dale D, Freedman M, Bonilla MA, Weinblatt M, Ganser A et al. Monosomy 7 and activating RAS mutations accompany malignant transformation in patients with congenital neutropenia. Blood 1995; 86: 4579–4586.

    CAS  PubMed  Google Scholar 

  17. Chomczynski P, Sacchi N . Single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction. Anal Biochem 1987; 162: 156–159.

    Article  CAS  PubMed  Google Scholar 

  18. Fukunaga R, Seto Y, Mizushima S, Nagata S . Three different mRNAs encoding human granulocyte colony-stimulating factor receptor. Proc Natl Acad Sci USA 1990; 87: 8702–8706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kasper B, Welte K, Hadam MR . MC24 CD114 (granulocyte-colony stimulating factor receptor) Workshop Panel report. In: Kishimoto T, Kikutani H, von dem Borne AEGKr, Goyert SM, Mason DY, Myasaka M, Moretta L, Okumura K, Shaw S, Springer TA, Sugamura K, Zola H (eds). Leucocyte Typing VI White Cell Differentiation Antigens. New York & London: Garland Publishing Inc., 1997, pp 1072–1074.

    Google Scholar 

  20. Herbst A, Koester M, Wirth D, Hauser H, Welte K . G-CSF receptor mutations in patients with severe congenital neutropenia do not abrogate Jak2 activation and stat1/stat3 translocation. Ann NY Acad Sci 1999; 872: 320–325; discussion 5–7.

    Article  CAS  PubMed  Google Scholar 

  21. Wilkens L, Flemming P, Gebel M, Bleck J, Terkamp C, Wingen L et al. Induction of aneuploidy by increasing chromosomal instability during dedifferentiation of hepatocellular carcinoma. Proc Natl Acad Sci USA 2004; 101: 1309–1314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Germeshausen M, Ballmaier M, Schulze H, Welte K, Flohr T, Beiske K et al. Granulocyte colony-stimulating factor receptor mutations in a patient with acute lymphoblastic leukemia secondary to severe congenital neutropenia. Blood 2001; 97: 829–830.

    Article  CAS  PubMed  Google Scholar 

  23. Dong F, Buitenen Cv, Pouwels K, Hoefsloot LH, Löwenberg B, Touw IP . Distinct cytoplasmic regions of the human granulocyte colony-stimulating factor receptor involved in induction of proliferation and maturation. Mol Cell Biol 1993; 13: 7774–7781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Finney R, Bishop J . Predisposition to neoplastic transformation caused by gene replacement of H-ras1. Science 1993; 260: 1524–1527.

    Article  CAS  PubMed  Google Scholar 

  25. Zhang Z, Wang Y, Vikis HG, Johnson L, Liu G, Li J et al. Wildtype Kras2 can inhibit lung carcinogenesis in mice. Nat Genet 2001; 29: 25–33.

    Article  CAS  PubMed  Google Scholar 

  26. Loh ML, Vattikuti S, Schubbert S, Reynolds MG, Carlson E, Lieuw KH et al. Mutations in PTPN11 implicate the SHP-2 phosphatase in leukemogenesis. Blood 2004; 103: 2325–2331.

    Article  CAS  PubMed  Google Scholar 

  27. Miraglia Del Giudice E, Lombardi C, Francese M, Nobili B, Conte ML, Amendola G et al. Frequent de novo monoallelic expression of β-spectrin gene (SPTB) in children with hereditary spherocytosis and isolated spectrin deficiency. Br J Haematol 1998; 101: 251–254.

    Article  CAS  PubMed  Google Scholar 

  28. Stirewalt D, Clurman B, Appelbaum F, Willman C, Radich J . p73 mutations and expression in adult de novo acute myelogenous leukemia. Leukemia 1999; 13: 985–990.

    Article  CAS  PubMed  Google Scholar 

  29. Kasper B, Herbst A, Pilz C, Germeshausen M, Tidow N, Hadam MR et al. Severe congenital neutropenia patients with point mutations in the granulocyte colony-stimulating factor (G-CSF) receptor mRNA express a normal G-CSF receptor protein. Blood 1997; 90: 2839–2840.

    CAS  PubMed  Google Scholar 

  30. Braun BS, Tuveson DA, Kong N, Le DT, Kogan SC, Rozmus J et al. Somatic activation of oncogenic Kras in hematopoietic cells initiates a rapidly fatal myeloproliferative disorder. Proc Natl Acad Sci USA 2004; 101: 597–602.

    Article  CAS  PubMed  Google Scholar 

  31. Chan IT, Kutok JL, Williams IR, Cohen S, Kelly L, Shigematsu H et al. Conditional expression of oncogenic K-ras from its endogenous promoter induces a myeloproliferative disease. J Clin Invest 2004; 113: 528–538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mempel K, Pietsch T, Menzel T, Zeidler C, Welte K . Increased serum levels of granulocyte colony-stimulating factor in patients with severe congenital neutropenia. Blood 1991; 77: 1919–1922.

    CAS  PubMed  Google Scholar 

  33. Kelly LM, Gilliland DG . Genetics of myeloid leukemias. Annu Rev Genomics Hum Genet 2002; 3: 179–198.

    Article  CAS  PubMed  Google Scholar 

  34. Hirai H, Kobayashi Y, Mano H, Hagiwara K, Maru Y, Omine M et al. A point mutation at codon 13 of the N-ras oncogene in myelodysplastic syndrome. Nature 1987; 327: 430–432.

    Article  CAS  PubMed  Google Scholar 

  35. Nicholson SE, Novak U, Ziegler SF, Layton JE . Distinct regions of the granulocyte colony-stimulating factor receptor are required for tyrosine phosphorylation of the signaling molecules JAK2, Stat3, and p42, p44 MAPK. Blood 1995; 86: 3698–3704.

    CAS  PubMed  Google Scholar 

  36. Dong F, Larner AC . Activation of Akt kinase by granulocyte colony-stimulating factor (G-CSF): evidence for the role of a tyrosine kinase activity distinct from janus kinases. Blood 2000; 95: 1656–1662.

    CAS  PubMed  Google Scholar 

  37. Barge RMY, Koning JP, Pouwels K, Dong F, Löwenberg B, Touw IP . Tryptophan 650 of human granulocyte colony-stimulating factor (G-CSF) receptor, implicated in the activation of JAK2, is also required for G-CSF-mediated activation of signaling complexes of the p21ras route. Blood 1996; 87: 2148–2153.

    CAS  PubMed  Google Scholar 

  38. Bartram CR . Mutations in ras genes in myelocytic leukemias and myelodysplastic syndromes. Blood Cells 1988; 14: 533–538.

    CAS  PubMed  Google Scholar 

  39. Shih L-Y, Huang C-F, Wang P-N, Wu J-H, Lin T-L, Dunn P et al. Acquisition of FLT3 or N-ras mutations is frequently associated with progression of myelodysplastic syndrome to acute myeloid leukemia. Leukemia 2004; 18: 466–475.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Sabine Jakobs and Klara Cherkaoui for excellent technical assistance and Gernot Beutel for his help with the microscopic pictures. The work was supported, in part, by Deutsche Krebshilfe (10-1548-We2) and by NIH Grant R01 CA72614.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Germeshausen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Germeshausen, M., Schulze, H., Kratz, C. et al. An acquired G-CSF receptor mutation results in increased proliferation of CMML cells from a patient with severe congenital neutropenia. Leukemia 19, 611–617 (2005). https://doi.org/10.1038/sj.leu.2403663

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403663

Keywords

This article is cited by

Search

Quick links