Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Spotlight
  • Published:

VEGF-induced phosphorylation of Bcl-2 influences B lineage leukemic cell response to apoptotic stimuli

Abstract

Post-translational modification of Bcl-2 protein has been described in a variety of cell models with effects varying from enhanced to abrogated function. In this study, we demonstrated that Bcl-2 was constitutively phosphorylated in several hematopoietic tumor cell lines and in primary ALL cells. Increased phosphorylation of Bcl-2 protein in the JM1 ALL cell line, achieved by expression of the phosphomimetic Bcl-2 construct S70E, enhanced JM1 cell chemoresistance. In contrast, initiation of JM1 cell apoptosis was coincident with dephosphorylation of Bcl-2 and elevated protein phosphatase 2A activity. S70E expression also diminished tBid-mediated cytochrome c release and blunted chemotherapy-induced activation of caspases-9 and -3 in JM1 cells. To determine whether soluble factors produced by stromal cells in the bone marrow influence phosphorylation of Bcl-2 protein, a panel of recombinant cytokines was evaluated. Of those tested, vascular endothelial growth factor (VEGF) induced phosphorylation of Bcl-2 protein and blunted cytochrome c release during chemotherapy or tBid treatment of ALL cells. In contrast, JM1 cells transfected with S70A, resulting in expression of Bcl-2 protein that cannot be phosphorylated, were not efficiently rescued from apoptosis by VEGF. These observations suggest that optimal protection of leukemic cells by VEGF may require activation of a pathway that includes Bcl-2 phosphorylation.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

References

  1. Tsujimoto Y, Cossman J, Jaffe E, Croce CM . Involvement of the bcl-2 gene in human follicular lymphoma. Science 1985; 228: 1440–1443.

    Article  CAS  PubMed  Google Scholar 

  2. McDonnell TJ, Deane N, Platt FM, Nunez G, Jaeger U, McKearn JP et al. bcl-2-immunoglobulin transgenic mice demonstrate extended B cell survival and follicular lymphoproliferation. Cell 1989; 57: 79–88.

    Article  CAS  PubMed  Google Scholar 

  3. Cheng EH, Kirsch DG, Clem RJ, Ravi R, Kastan MB, Bedi A et al. Conversion of Bcl-2 to a Bax-like death effector by caspases. Science 1997; 278: 1966–1968.

    Article  CAS  PubMed  Google Scholar 

  4. Grandgirard D, Studer E, Monney L, Belser T, Fellay I, Borner C et al. Alphaviruses induce apoptosis in Bcl-2-overexpressing cells: evidence for a caspase-mediated, proteolytic inactivation of Bcl-2. EMBO J 1998; 17: 1268–1278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Haldar S, Chintapalli J, Croce CM . Taxol induces bcl-2 phosphorylation and death of prostate cancer cells. Cancer Res 1996; 56: 1253–1255.

    CAS  PubMed  Google Scholar 

  6. Ling YH, Liebes L, Ng B, Buckley M, Elliott PJ, Adams J et al. PS-341, a novel proteasome inhibitor, induces Bcl-2 phosphorylation and cleavage in association with G2-M phase arrest and apoptosis. Mol Cancer Ther 2002; 1: 841–849.

    CAS  PubMed  Google Scholar 

  7. Haldar S, Jena N, Croce CM . Inactivation of Bcl-2 by phosphorylation. Proc Natl Acad Sci USA 1995; 92: 4507–4511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Korhonen L, Belluardo N, Mudo G, Lindholm D . Increase in Bcl-2 phosphorylation and reduced levels of BH3-only Bcl-2 family proteins in kainic acid-mediated neuronal death in the rat brain. Eur J Neurosci 2003; 18: 1121–1134.

    Article  PubMed  Google Scholar 

  9. Park JW, Choi YJ, Jang MA, Baek SH, Lim JH, Passaniti T et al. Arsenic trioxide induces G2/M growth arrest and apoptosis after caspase-3 activation and bcl-2 phosphorylation in promonocytic U937 cells. Biochem Biophys Res Commun 2001; 286: 726–734.

    Article  CAS  PubMed  Google Scholar 

  10. Attalla H, Westberg JA, Andersson LC, Adlercreutz H, Makela TP . 2-Methoxyestradiol-induced phosphorylation of Bcl-2: uncoupling from JNK/SAPK activation. Biochem Biophys Res Commun 1998; 247: 616–619.

    Article  CAS  PubMed  Google Scholar 

  11. Lu K, Dempsey J, Schultz RM, Shih C, Teicher BA . Cryptophycin-induced hyperphosphorylation of Bcl-2, cell cycle arrest and growth inhibition in human H460 NSCLC cells. Cancer Chemother Pharmacol 2001; 47: 170–178.

    Article  CAS  PubMed  Google Scholar 

  12. Hu ZB, Minden MD, McCulloch EA . Phosphorylation of BCL-2 after exposure of human leukemic cells to retinoic acid. Blood 1998; 92: 1768–1775.

    CAS  PubMed  Google Scholar 

  13. May WS, Tyler PG, Ito T, Armstrong DK, Qatsha KA, Davidson NE . Interleukin-3 and bryostatin-1 mediate hyperphosphorylation of BCL2 alpha in association with suppression of apoptosis. J Biol Chem 1994; 269: 26865–26870.

    CAS  PubMed  Google Scholar 

  14. Deng X, Gao F, May Jr WS . Bcl2 retards G1/S cell cycle transition by regulating intracellular ROS. Blood 2003; 102: 3179–3185.

    Article  CAS  PubMed  Google Scholar 

  15. Vantieghem A, Xu Y, Assefa Z, Piette J, Vandenheede JR, Merlevede W et al. Phosphorylation of Bcl-2 in G2/M phase-arrested cells following photodynamic therapy with hypericin involves a CDK1-mediated signal and delays the onset of apoptosis. J Biol Chem 2002; 277: 37718–37731.

    Article  CAS  PubMed  Google Scholar 

  16. Fortney JE, Zhao W, Wenger SL, Gibson LF . Bone marrow stromal cells regulate caspase 3 activity in leukemic cells during chemotherapy. Leuk Res 2001; 25: 901–907.

    Article  CAS  PubMed  Google Scholar 

  17. Mudry RE, Fortney JE, York T, Hall BM, Gibson LF . Stromal cells regulate survival of B-lineage leukemic cells during chemotherapy. Blood 2000; 96: 1926–1932.

    CAS  PubMed  Google Scholar 

  18. Yamamoto Y, Mochida J, Sakai D, Nakai T, Nishimura K, Kawada H et al. Upregulation of the viability of nucleus pulposus cells by bone marrow-derived stromal cells: significance of direct cell-to-cell contact in coculture system. Spine 2004; 29: 1508–1514.

    Article  PubMed  Google Scholar 

  19. Kalechman Y, Sotnik-Barkai I, Albeck M, Sredni B . Protection of bone marrow stromal cells from the toxic effects of cyclophosphamide in vivo and of ASTA-Z 7557 and etoposide in vitro by ammonium trichloro(dioxyethylene-O-O')tellurate (AS101). Cancer Res 1993; 53: 1838–1844.

    CAS  PubMed  Google Scholar 

  20. Matsunaga T, Takemoto N, Sato T, Takimoto R, Tanaka I, Fujimi A et al. Interaction between leukemic-cell VLA-4 and stromal fibronectin is a decisive factor for minimal residual disease of acute myelogenous leukemia. Nat Med 2003; 9: 1158–1165.

    Article  CAS  PubMed  Google Scholar 

  21. Gibson LF, Fortney J, Landreth KS, Piktel D, Ericson SG, Lynch JP . Disruption of bone marrow stromal cell function by etoposide. Biol Blood Marrow Transplant 1997; 3: 122–132.

    CAS  PubMed  Google Scholar 

  22. Gibson LF, Piktel D, Narayanan R, Nunez G, Landreth KS . Stromal cells regulate bcl-2 and bax expression in pro-B cells. Exp Hematol 1996; 24: 628–637.

    CAS  PubMed  Google Scholar 

  23. Ito T, Deng X, Carr B, May WS . Bcl-2 phosphorylation required for anti-apoptosis function. J Biol Chem 1997; 272: 11671–11673.

    Article  CAS  PubMed  Google Scholar 

  24. Ruvolo PP, Deng X, Ito T, Carr BK, May WS . Ceramide induces Bcl2 dephosphorylation via a mechanism involving mitochondrial PP2A. J Biol Chem 1999; 274: 20296–20300.

    Article  CAS  PubMed  Google Scholar 

  25. Ruvolo PP, Deng X, May WS . Phosphorylation of Bcl2 and regulation of apoptosis. Leukemia 2001; 15: 515–522.

    Article  CAS  PubMed  Google Scholar 

  26. Blagosklonny MV . Unwinding the loop of Bcl-2 phosphorylation. Leukemia 2001; 15: 869–874.

    Article  CAS  PubMed  Google Scholar 

  27. Fang G, Chang BS, Kim CN, Perkins C, Thompson CB, Bhalla KN . ‘Loop’ domain is necessary for taxol-induced mobility shift and phosphorylation of Bcl-2 as well as for inhibiting taxol-induced cytosolic accumulation of cytochrome c and apoptosis. Cancer Res 1998; 58: 3202–3208.

    CAS  PubMed  Google Scholar 

  28. Blagosklonny MV, Schulte T, Nguyen P, Trepel J, Neckers LM . Taxol-induced apoptosis and phosphorylation of Bcl-2 protein involves c-Raf-1 and represents a novel c-Raf-1 signal transduction pathway. Cancer Res 1996; 56: 1851–1854.

    CAS  PubMed  Google Scholar 

  29. Mai H, May WS, Gao F, Jin Z, Deng X . A functional role for nicotine in Bcl2 phosphorylation and suppression of apoptosis. J Biol Chem 2003; 278: 1886–1891.

    Article  CAS  PubMed  Google Scholar 

  30. Deng X, Gao F, Flagg T, May Jr WS . Mono- and multisite phosphorylation enhances Bcl2's antiapoptotic function and inhibition of cell cycle entry functions. Proc Natl Acad Sci USA 2004; 101: 153–158.

    Article  CAS  PubMed  Google Scholar 

  31. Thomas A, Pepper C, Hoy T, Bentley P . Bryostatin induced protein kinase C modulation, Mcl-1 up-regulation and phosphorylation of Bcl-2 resulting in cellular differentiation and resistance to drug-induced apoptosis in B-cell chronic lymphocytic leukemia cells. Leuk Lymphoma 2004; 45: 997–1008.

    Article  CAS  PubMed  Google Scholar 

  32. Jiffar T, kurinna S, Suck G, Carlson-Bremer D, Ricciardi MR, Konopleva M et al. PKC alpha mediates chemoresistance in acute lymphoblastic leukemia through effects on Bcl2 phosphorylation. Leukemia 2004; 18: 505–512.

    Article  CAS  PubMed  Google Scholar 

  33. Narendran A, Ganjavi H, Morson N, Connor A, Barlow JW, Keystone E et al. Mutant p53 in bone marrow stromal cells increases VEGF expression and supports leukemia cell growth. Exp Hematol 2003; 31: 693–701.

    Article  CAS  PubMed  Google Scholar 

  34. Katoh O, Takahashi T, Oguri T, Kuramoto K, Mihara K, Kobayashi M et al. Vascular endothelial growth factor inhibits apoptotic death in hematopoietic cells after exposure to chemotherapeutic drugs by inducing MCL-1 acting as an antiapoptotic factor. Cancer Res 1998; 58: 5563–5569.

    Google Scholar 

  35. Yi X, Yin XM, Dong Z . Inhibition of Bid-induced apoptosis by Bcl-2. tBid insertion, Bax translocation, and Bax/Bak oligomerization suppressed. J Biol Chem 2003; 278: 16992–16999.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH Grant R01 HL56888 (LFG), the Dean and Charlene Hartley Leukemia Research Fund, and a WVU School of Medicine Internal Grant, Office of Research and Graduate Studies (LFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L F Gibson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Chen, L., Benincosa, J. et al. VEGF-induced phosphorylation of Bcl-2 influences B lineage leukemic cell response to apoptotic stimuli. Leukemia 19, 344–353 (2005). https://doi.org/10.1038/sj.leu.2403643

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403643

Keywords

This article is cited by

Search

Quick links