Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Dendritic cells in MDS and AML – cause, effect or solution to the immune pathogenesis of disease?

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Ma L, Delforge M, Van Duppen V, Verhowef G, Emanuel B, Boogaerts M et al. Circulating myeloid and lymphoid precursor dendritic cells are clonally involved in myelodysplastic syndromes. Leukemia 2004; 18: 1451–1456.

    Article  CAS  PubMed  Google Scholar 

  2. Mohty M, Jarrossay D, Lafage-Pochitaloff M, Zandotti C, Briere F, de Lamballeri X et al. Circulating blood dendritic cells from myeloid leukemia patients display quantitative and cytogenetic abnormalities as well as functional impairment. Blood 2001; 98: 3750–3756.

    Article  CAS  PubMed  Google Scholar 

  3. Robinson SP, English N, Jaju R, Kearney L, Knight SC, Reid CDL . The in-vitro generation of dendritic cells from blast cells in acute leukaemia. Br J Haematol 1998; 103: 763–771.

    CAS  PubMed  Google Scholar 

  4. Panoskaltsis N, Belanger TJ, Liesveld JL, Abboud CN . Optimal cytokine stimulation for the enhanced generation of leukemic dendritic cells in short-term culture. Leuk Res 2002; 26: 191–201.

    Article  CAS  PubMed  Google Scholar 

  5. Harrison BD, Adams JA, Brigs M, Brereton ML, Liu Yin JA . Stimulation of autologous proliferative and cytotoxic T-cell responses by ‘leukemic dendritic cells’ derived from blast cells in acute myeloid leukemia. Blood 2001; 97: 2764–2771.

    Article  CAS  PubMed  Google Scholar 

  6. Panoskaltsis N, Reid CDL, Knight SC . Immune modulation with dendritic cells. Transfus Med 2004; 14: 81–96.

    Article  CAS  PubMed  Google Scholar 

  7. Robinson SP, Patterson S, English N, Davies D, Knight SC, Reid CDL . Human peripheral blood contains two distinct lineages of dendritic cells. Eur J Immunol 1999; 29: 2769–2778.

    Article  CAS  PubMed  Google Scholar 

  8. Soumelis V, Scott I, Gheyas F, Bouhour D, Cozon G, Cotte L et al. Depletion of circulating natural type 1 interferon-producing cells in HIV-infected AIDS patients. Blood 2001; 98: 906–912.

    Article  CAS  PubMed  Google Scholar 

  9. Knight SC, Burke F, Bedford PA . Dendritic cells, antigen distribution and the initiation of primary immune responses to self and non-self antigens. Cancer Biol 2002; 12: 301–308.

    Article  CAS  Google Scholar 

  10. Hersh EM, Whitecar JP, McCredie KB, Bodey GP, Freireich EJ . Chemotherapy, immunocompetence, immunosuppression and prognosis in acute leukemia. N Engl J Med 1971; 285: 1211–1216.

    Article  CAS  PubMed  Google Scholar 

  11. Reid CDL . Dendritic cells and immunotherapy for malignant disease. Br J Haematol 2001; 112: 874–887.

    Article  CAS  PubMed  Google Scholar 

  12. Costello RT, Mallet F, Gaugler B, Sainty D, Arnoulet C, Gastaut J et al. Human acute myeloid leukemia CD34+/CD38− progenitor cells have decreased sensitivity to chemotherapy and fas-induced apoptosis, reduced immunogenicity, and impaired dendritic cell transformation capacities. Cancer Res 2000; 60: 4403–4411.

    CAS  PubMed  Google Scholar 

  13. Buggins AGS, Milojkovic D, Arno MJ, Lea NC, Mufti GJ, Thomas NSB et al. Microenvironment produced by acute myeloid leukemia cells prevents T cell activation and proliferation by inhibition of NF-κB, c-Myc, and pRb pathways. J Immunol 2002; 167: 6021–6030.

    Article  Google Scholar 

  14. Panoskaltsis N, Reid CDL, Knight SC . Quantification and cytokine production of circulating lymphoid and myeloid cells in acute myelogenous leukemia (AML). Leukemia 2003; 17: 716–725.

    Article  CAS  PubMed  Google Scholar 

  15. Catovsky D, Lauria F, Matutes E, Foa R, Mantovani V, Tura S et al. Increase in Tγ lymphocytes in B-cell chronic lymphocytic leukaemia. Br J Haematol 1981; 47: 539–544.

    Article  CAS  PubMed  Google Scholar 

  16. Dowding C, Th’ng KH, Goldman JM, Galton DAG . Increased T-lymphocyte numbers in chronic granulocytic leukemia before treatment. Exp Hematol 1984; 12: 811–815.

    CAS  PubMed  Google Scholar 

  17. Scheibenbogen C, Letsch A, Thiel E, Schmittel A, Mailaender V, Baerwolf S et al. CD8 T-cell responses to Wilms tumor gene product WT1 and proteinase 3 in patients with acute myeloid leukemia. Blood 2002; 100: 2132–2137.

    Article  CAS  PubMed  Google Scholar 

  18. Buggins AGS, Hirst WJR, Pagliuca A, Mufti GJ . Variable expression of CD3-zeta and associated protein tyrosine kinases in lymphocytes from patients with myeloid malignancies. Br J Haematol 1998; 100: 784–792.

    Article  CAS  PubMed  Google Scholar 

  19. Trimble LA, Kam LW, Friedman RS, Xu Z, Lieberman J . CD3ζ and CD28 down-modulation on CD8 T cells during viral infection. Blood 2000; 96: 1021–1029.

    CAS  PubMed  Google Scholar 

  20. Krishnan S, Warke VG, Nambiar MP, Wong HK, Tsokos GC, Farber DL . Generation and biochemical analysis of human effector CD4 T cells: alterations in tyrosine phosphorylation and loss of CD3ζ expression. Blood 2001; 97: 3851–3859.

    Article  CAS  PubMed  Google Scholar 

  21. Kochenderfer JN, Kobayashi S, Wieder ED, Su C, Molldrem JJ . Loss of T-lymphocyte clonal dominance in patients with myelodysplastic syndrome responsive to immunosuppression. Blood 2002; 100: 3639–3645.

    Article  CAS  PubMed  Google Scholar 

  22. Molldrem JJ, Lee PP, Wang C, Felio K, Kantarjian HM, Champlin RE et al. Evidence that specific T lymphocytes may participate in the elimination of chronic myelogenous leukemia. Nat Med 2000; 6: 1018–1023.

    Article  CAS  PubMed  Google Scholar 

  23. Molldrem JJ, Lee PP, Kant S, Wieder E, Jiang W, Lu S et al. Chronic myelogenous leukemia shapes host immunity by selective deletion of high-avidity leukemia-specific T cells. J Clin Invest 2003; 111: 639–647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Elisseeva OA, Oka Y, Tsuboi A, Ogata K, Wu F, Kim EH et al. Humoral immune responses against Wilms tumor gene WT1 product in patients with hematopoietic malignancies. Blood 2002; 99: 3272–3279.

    Article  CAS  PubMed  Google Scholar 

  25. Stavely-O’Carroll K, Sotomayor E, Montgomery J, Borrello I, Hwang L, Fein S et al. Induction of antigen-specific T cell anergy: an early event in the course of tumor progression. Proc Natl Acad Sci USA 1998; 95: 1178–1183.

    Article  Google Scholar 

  26. Takasugi M, Ramseyer A, Takasugi J . Decline of natural nonselective cell-mediated cytotoxicity in patients with tumor progression. Cancer Res 1977; 37: 413–418.

    CAS  PubMed  Google Scholar 

  27. Mintz PJ, Kim J, Do K-A, Wang X, Zinner RG, Cristofanilli M et al. Fingerprinting the circulating repertoire of antibodies from cancer patients. Nat Biotechnol 2003; 21: 57–63.

    Article  CAS  PubMed  Google Scholar 

  28. Valmori D, Dutoit V, Lienard D, Lejeune F, Speiser D, Rimoldi D et al. Tetramer-guided analysis of TCR β-chain usage reveals a large repertoire of melan-A-specific CD8+ T cells in melanoma patients. J Immunol 2000; 165: 533–538.

    Article  CAS  PubMed  Google Scholar 

  29. Kottaridis PD, Gale RE, Frew ME, Harrison G, Langabeer SE, Belton AA et al. The presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials. Blood 2001; 98: 1752–1759.

    Article  CAS  PubMed  Google Scholar 

  30. Kelly LM, Kutok JL, Williams IR, Boulton CL, Amaral SM, Curley DP et al. PML/RARα and FLT3-ITD induce an APL-like disease in a mouse model. Proc Natl Acad Sci USA 2002; 99: 8283–8288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bose S, Deininger M, Gora-Tybor J, Goldman JM, Melo JV . The presence of typical and atypical BCR–ABL fusion genes in leukocytes of normal individuals: biologic significance and implications for the assessment of minimal residual disease. Blood 1998; 92: 3362–3367.

    CAS  PubMed  Google Scholar 

  32. Liu Y, Hernandez AM, Shibata D, Cortopassi GA . BCL2 translocation frequency rises with age in humans. Proc Natl Acad Sci USA 1994; 91: 8910–8914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Basecke J, Cepek L, Mannhalter C, Krauter J, Hildenhagen S, Brittinger G et al. Transcription of AML1/ETO in bone marrow and cord blood of individuals without acute myelogenous leukemia. Blood 2002; 100: 2267–2268.

    Article  CAS  PubMed  Google Scholar 

  34. Wiemels JL, Ford AM, Van Wering ER, Postma A, Greaves M . Protracted and variable latency of acute lymphoblastic leukemia after TEL–AML1 gene fusion in utero. Blood 1999; 94: 1057–1062.

    CAS  PubMed  Google Scholar 

  35. Wiemels JL, Xiao Z, Buffler PA, Maia AT, Ma X, Dicks BM et al. In utero origin of t(8;21) AML1-ETO translocations in childhood acute myeloid leukemia. Blood 2002; 99: 3801–3805.

    Article  CAS  PubMed  Google Scholar 

  36. Ford A, Bennett CA, Price CM, Bruin MCA, Van Bering ER, Greaves M . Fetal origins of the TEL–AML1 fusion gene in identical twins with leukemia. Proc Natl Acad Sci USA 1998; 95: 4584–4588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gilliland DG, Griffin JD . The roles of FLT3 in hematopoiesis and leukemia. Blood 2002; 100: 1532–1542.

    Article  CAS  PubMed  Google Scholar 

  38. Mohty M, Olive D, Gaugler B . Leukemic dendritic cells: potential for therapy and insights towards immune escape by leukemic blasts. Leukemia 2002; 16: 2197–2204.

    Article  CAS  PubMed  Google Scholar 

  39. Allan JM, Wild CP, Rollinson S, Willett EV, Moorman AV, Dovey GJ et al. Polymorphism in glutathione S-transferase P1 is associated with susceptibility to chemotherapy-induced leukemia. Proc Natl Acad Sci USA 2001; 98: 11592–11597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Strick R, Strissel PL, Borgers S, Smith SL, Rowley JD . Dietary bioflavonoids induce cleavage in the Mll gene and may contribute to infant leukemia. Proc Natl Acad Sci USA 2000; 97: 4790–4795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Giles FJ, Keating A, Goldstone AH, Avivi I, Willman Ch, Kantarjian HM . Acute myeloid leukemia. In: Broudy VC, Abkowitz JL, Vose JM (eds). Hematology 2002. Washington, DC: The American Society of Hematology, 2002, pp 73–110.

    Google Scholar 

  42. Qian Z, Fernald AA, Godley LA, Larson RA, Le Beau MM . Expression profiling of CD34+ hematopoietic stem progenitor ells reveals distinct subtypes of therapy-related acute myeloid leukemia. Proc Natl Acad Sci USA 2002; 99: 14925–14930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N Panoskaltsis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panoskaltsis, N. Dendritic cells in MDS and AML – cause, effect or solution to the immune pathogenesis of disease?. Leukemia 19, 354–357 (2005). https://doi.org/10.1038/sj.leu.2403634

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403634

This article is cited by

Search

Quick links