Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

APL

WEB-2086 and WEB-2170 trigger apoptosis in both ATRA-sensitive and -resistant promyelocytic leukemia cells and greatly enhance ATRA differentiation potential

Abstract

PAF-receptor antagonists WEB-2086 and WEB-2170 (WEBs) have been previously shown to induce differentiation in murine and human leukemia cells. The present study describes the apoptotic-differentiative effect of WEBs in all-trans-retinoic acid (ATRA)-sensitive (NB4) and -resistant (NB4-007-6 and NB4-MR4) acute promyelocytic leukemia (APL) cell lines as well as blasts from patients with t(15;17) APL. NB4 cells exposed to 0.5–1 mM WEBs underwent striking growth arrest and massive apoptosis without appreciable differentiation; IC50 values after 3-day treatment of NB4 were 0.4 and 0.25 mM for WEB-2086 and WEB-2170, respectively. WEBs induced apoptosis also in the two ATRA-resistant NB4-007-6 and NB4-MR4 cell lines and in blasts from patients with t(15;17) APL. Moreover, subapoptotic WEBs acted synergistically with low-dose (0.025–0.05 μ M) ATRA; this allowed to increase ATRA differentiation potential up to 40-fold and to improve both number and intensity of NBT-positive NB4 cells at definitely higher levels than with 1 μ M ATRA alone. The powerful antiproliferative-apoptotic activities of WEBs in vitro on ATRA-sensitive, ATRA-resistant APL cells and blasts from patients with APL as well as drug capabilities to enhance ATRA differentiation potential suggested that these agents also due to their recognized tolerability in vivo might improve, alone or in combination, clinical treatment of APL.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Huang ME, Ye YC, Chen SR, Chai JR, Lu JX, Zhoa L et al. Use of all trans retinoic acid in the treatment of acute promyelocytic leukemia. Blood 1988; 72: 567–572.

    CAS  PubMed  Google Scholar 

  2. Chen ZX, Xue YQ, Zhang R, Tao RF, Xia XM, Li C et al. A clinical and experimental study on all-trans retinoic acid-treated acute promyelocytic leukemia patients. Blood 1991; 78: 1413–1419.

    CAS  PubMed  Google Scholar 

  3. Warrell Jr RP . Retinoid resistance in acute promyelocytic leukemia: new mechanisms, strategies and implications. Blood 1993; 82: 1949–1953.

    CAS  PubMed  Google Scholar 

  4. Melnick A, Licht JD . Deconstructing a disease: RARα, its fusion partners, and their roles in the pathogenesis of acute promyelocytic leukemia. Blood 1999; 93: 3167–3215.

    CAS  PubMed  Google Scholar 

  5. Miller Jr WH, Shipper HM, Lee JS, Singer J, Waxman S . Mechanism of action of arsenic trioxide. Cancer Res 2002; 62: 3893–3903.

    CAS  PubMed  Google Scholar 

  6. Chen GQ, Shi XG, Tang Wei, Xiong SM, Zhu J, Cai X et al. Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL): As2O3 exerts dose-dependent dual effects on APL cells. Blood 1997; 89: 3345–3353.

    CAS  PubMed  Google Scholar 

  7. Ferrara FF, Fazi F, Bianchini A, Padula F, Gelmetti V, Minucci S et al. Histone deacetylase-targeted treatment restores retinoic acid signaling and differentiation in acute myeloid leukemia. Cancer Res 2001; 61: 2–7.

    PubMed  Google Scholar 

  8. He LZ, Tolentino T, Grayson P, Zhong S, Warrell Jr RP, Rifkind RA et al. Histone deacetylase inhibitors induce remission in transgenic models of therapy-resistant acute promyelocytic leukemia. J Clin Invest 2001; 108: 1321–1330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Melnick A, Licht JD . Histone deacetylases as therapeutic targets in hematologic malignancies. Curr Opin Hematol 2002; 9: 322–332.

    Article  PubMed  Google Scholar 

  10. Côté S, Rosenauer A, Bianchini A, Seiter K, Vandewiele J, Nervi C et al. Response to histone deacetylase inhibition of novel PML/RARα mutants detected in retinoic acid-resistant APL cells. Blood 2002; 100: 2586–2596.

    Article  PubMed  Google Scholar 

  11. Pandolfi PP . Transcription therapy for cancer. Oncogene 2001; 20: 3116–3127.

    Article  CAS  PubMed  Google Scholar 

  12. Waxman S . Differentiation therapy in acute myelogenous leukemia (non-APL). Leukemia 2000; 14: 491–496.

    Article  CAS  PubMed  Google Scholar 

  13. Casals-Stenzel J, Heuer HO . Use of WEB 2086 and WEB 2170 as platelet-activating factor antagonists. In: Murphy RC, Fitzpatrick FA (eds). Methods in Enzymology. Academic Press, San Diego, California, 1990; 187: 455–465.

    Google Scholar 

  14. Cellai C, Laurenzana A, Vannucchi AM, Della Malva N, Bianchi L, Paoletti F . Specific PAF antagonist WEB-2086 induces terminal differentiation of murine and human leukemia cells. FASEB J 2002; 16: 733–735.

    Article  CAS  PubMed  Google Scholar 

  15. Lanotte M, Martin-Thouvenin V, Najman S, Balerini P, Valensi F, Berger R . NB4, a maturation inducibile cell line with t(15;17) marker isolated from human acute promyelocytic leukemia (M3). Blood 1991; 77: 1080–1086.

    CAS  PubMed  Google Scholar 

  16. Dermime S, Grignani F, Clerici M, Nervi C, Sozzi G, Talamo GP et al. Occurrence of resistance to retinoic acid in the acute promyelocytic leukaemia cell line NB4 is associated with altered expression of the PML/RARα protein. Blood 1993; 82: 1573–1577.

    CAS  PubMed  Google Scholar 

  17. Rosenauer A, Raelson JV, Nervi C, Eydoux P, DeBlasio A, Miller Jr WH . Alterations in expression, binding to ligand and DNA, and transcriptional activity of rearranged and wild-type retinoid receptors in retinoid-resistant acute promyelocytic leukaemia cell lines. Blood 1996; 88: 2671–2682.

    CAS  PubMed  Google Scholar 

  18. Hostanska K, Daum G, Saller R . Cytostatic and apoptosis-inducing activity of boswellic acids toward malignant cell lines in vitro. Anticancer Res 2002; 22: 2853–2862.

    CAS  PubMed  Google Scholar 

  19. Bennett JM, Catovski D, Daniel MT, Flandrin G, Galton DA, Gralnick HR et al. Proposed revised criteria for the classification of acute myeloid leukemia. A report of the French–American–British Cooperative Group. Ann Intern Med 1985; 103: 620–625.

    Article  CAS  PubMed  Google Scholar 

  20. Tombaccini D, Mocali A, Weber E, Paoletti F . A cystatin-based affinity procedure for the isolation and analysis of papain-like cysteine proteinases from tissue extracts. Anal Biochem 2001; 289: 231–238.

    Article  CAS  PubMed  Google Scholar 

  21. Sakashita A, Nakamaki T, Tsuruoka N, Homma Y, Hozumi M . Granulocyte colony-stimulating factor, not granulocyte-macrophage colony-stimulating factor, cooperates with retinoic acid on the induction of functional N-formyl-methionyl-phenylalanine receptors in HL-60 cells. Leukemia 1991; 5: 26–31.

    CAS  PubMed  Google Scholar 

  22. Blankenberg FG, Storrs RW, Naumovski L, Goralski T, Spielman D . Detection of apoptotic cell death by proton nuclear magnetic resonance spectroscopy. Blood 1996; 87: 1951–1956.

    CAS  PubMed  Google Scholar 

  23. Frankel SR, Eardley A, Lauwers G, Weiss M, Warrell RPJ . The retinoic acid syndrome in acute promyelocytic leukemia. Ann Intern Med 1992; 117: 292–296.

    Article  CAS  PubMed  Google Scholar 

  24. Kizaki M, Ueno H, Yamazoe Y, Shimada M, Takayama N, Muto A et al. Mechanisms of retinoid resistance in leukemic cells: possible role of cytochrome P450 and P-glycoprotein. Blood 1996; 87: 725–733.

    CAS  PubMed  Google Scholar 

  25. Jing Y, Lijuan X, Waxman S . Target removal of PML-RARα protein is required prior to inhibition of histone deacetylase for overcoming all-trans retinoic acid differentiation resistance in acute promyelocytic leukemia. Blood 2002; 100: 1008–1013.

    Article  CAS  PubMed  Google Scholar 

  26. Adamus WS, Heuer H, Meade CJ, Brecht HM . Safety, tolerability, and pharmacologic activity of multiple doses of new platelet activating factor antagonist WEB 2086 in human subjects. Clin Pharmacol Ther 1989; 45: 270–276.

    Article  CAS  PubMed  Google Scholar 

  27. Takehara S, Mikashima H, Muramoto Y, Terasawa M, Setoguchi M, Tahara T . Pharmacological actions of Y-24180, a new specific antagonist of platelet activating factor (PAF): II. Interactions with PAF and benzodiazepine receptors. Prostaglandins 1990; 40: 571–583.

    Article  CAS  PubMed  Google Scholar 

  28. Zisterer DM, Campiani G, Nacci V, Williams DC . Pyrrolo-1,5-benzoxazepines induce apoptosis in HL-60, Jurkat and Hut-78 cells: a new class of apoptotic agents. J Pharmacol Exp Ther 2000; 293: 48–59.

    CAS  PubMed  Google Scholar 

  29. Walter RB, Raden BW, Cronk MR, Bernstein ID, Appelbaum FR, Banker DE . The peripheral benzodiazepine receptor ligand, PK11195, overcomes different resistance mechanisms to sensitize AML cells to gemtuzumab ozogamicin. Blood 2004; 103: 4276–4284.

    Article  CAS  PubMed  Google Scholar 

  30. Ishii S, Shimizu T . Platelet-activatig factor (PAF) receptor and genetically engineered PAF receptor mutant mice. Prog Lipid Res 2000; 39: 41–82.

    Article  CAS  PubMed  Google Scholar 

  31. Bussolati B, Biancone L, Cassoni P, Russo S, Rola-Pleszczynsky M, Montrucchio G et al. PAF produced by human breast cancer cells promotes migration and proliferation of tumor cells and neoangiogenesis. Am J Pathol 2000; 157: 1713–1725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work is supported by grants from MURST (PRIN 2002, # MM06103241) and the University of Florence. AL and CC are PhD fellows; AP is a fellow of AIL (Associazione Italiana contro le Leucemie; Firenze). Authors are grateful to F Pane (Department of Biochemistry and Medical Biotechnology, Federico II University, Naples, Italy) who kindly provided primary blasts from patients with APL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F Paoletti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laurenzana, A., Cellai, C., Vannucchi, A. et al. WEB-2086 and WEB-2170 trigger apoptosis in both ATRA-sensitive and -resistant promyelocytic leukemia cells and greatly enhance ATRA differentiation potential. Leukemia 19, 390–395 (2005). https://doi.org/10.1038/sj.leu.2403618

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403618

Keywords

This article is cited by

Search

Quick links