Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Mouse Model

Impaired myelopoiesis in mice devoid of interferon regulatory factor 1

Abstract

Interferon regulatory factor (IRF)-1 is a transcription factor controlling the expression of several genes, which are differentially induced depending on the cell type and signal. IRF-1 modulates multiple functions, including regulation of immune responses and host defence, cell growth, cytokine signalling and hematopoietic development. Here, we investigated the role of IRF-1 in granulocytic differentiation in mice with a null mutation in the IRF-1 gene. We show that IRF-1−/− bone marrow cells exhibit an increased number of immature granulocytic precursors, associated with a decreased number of mature granulocytic elements as compared to normal mice, suggestive of a defective maturation process. Clonogenetic analyses revealed a reduced number of CFU-G, CFU-M and CFU-GM colonies in IRF-1−/− mice, while the number of BFU-E/CFU-E colonies was unchanged. At the molecular level, the expression of CAAT-enhancer-binding protein (C/EBP)-ɛ, -α and PU.1 was substantially lower in the CD11b+ cells from the bone marrow of IRF-1−/− mice as compared to cells from wild-type mice. These results, together with the fact that IRF-1 is markedly induced early during granulo-monocytic differentiation of CD34+ cells, highlight the pivotal role of IRF-1 in the early phases of myelopoiesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Tenen DG, Hromas R, Licht J, Zhang DE . Transcription factors, normal myeloid development, and leukemia. Blood 1997; 90: 489–519.

    CAS  PubMed  Google Scholar 

  2. Shivdasani RA, Orkin SH . The transcriptional control of hematopoiesis. Blood 1996; 87: 4025–4039.

    CAS  PubMed  Google Scholar 

  3. Lloberas J, Soler C, Celada A . The key role of PU.1/SPI-1 in B cells, myeloid cells and macrophages. Immunol Today 1999; 20: 184–189.

    Article  CAS  PubMed  Google Scholar 

  4. Wang X, Scott E, Sawyers CL, Friedman AD . C/EBPα bypasses granulocyte colony-stimulating factor signals to rapidly induce PU.1 gene expression, stimulate granulocytic differentiation, and limit proliferation in 32D cl3 myeloblasts. Blood 1999; 94: 560–571.

    CAS  PubMed  Google Scholar 

  5. Radomska HS, Huettner CS, Zhang P, Cheng T, Scadden DT, Tenen DG . CCAAT/enhancer binding protein α is a regulatory switch sufficient for induction of granulocytic development from bipotential myeloid progenitors. Mol Cell Biol 1998; 18: 4301–4314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lekstrom-Himes J, Xanthopoulos KG . Biological role of the CCAAT/enhancer-binding protein family of transcription factors. J Biol Chem 1998; 273: 28545–28548.

    Article  CAS  PubMed  Google Scholar 

  7. Nguyen HQ, Hoffman-Liebermann B, Liebermann DA . The zinc finger transcription factor Egr-1 is essential for and restricts differentiation along the macrophage lineage. Cell 1993; 72: 197–209.

    Article  CAS  PubMed  Google Scholar 

  8. Fujita T, Sakakibara J, Sudo Y, Miyamoto M, Kimura Y, Taniguchi T . Evidence for a nuclear factor(s), IRF-1, mediating induction and silencing properties to human IFN-β gene regulatory elements. EMBO J 1988; 7: 3397–3405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nguyen H, Hiscott J, Pitha PM . The growing family of interferon regulatory factors. Cytokine Growth Factor Rev 1997; 8: 293–312.

    Article  CAS  PubMed  Google Scholar 

  10. Taniguchi T, Ogasawara K, Takaoka A, Tanaka N . IRF family of transcription factors as regulators of host defense. Annu Rev Immunol 2001; 19: 623–655.

    Article  CAS  PubMed  Google Scholar 

  11. Boultwood J, Fidler C, Lewis S, MacCarthy A, Sheridan H, Kelly S et al. Allelic loss of IRF1 in myelodysplasia and acute myeloid leukemia: retention of IRF1 on the 5q-chromosome in some patients with the 5q-syndrome. Blood 1993; 82: 2611–2616.

    CAS  PubMed  Google Scholar 

  12. Green WB, Slovak ML, Chen IM, Pallavicini M, Hecht JL, Willman CL . Lack of IRF-1 expression in acute promyelocytic leukemia and in a subset of acute myeloid leukemias with del(5)(q31). Leukemia 1999; 13: 1960–1971.

    Article  CAS  PubMed  Google Scholar 

  13. Willman CL, Sever CE, Pallavicini MG, Harada H, Tanaka N, Slovak ML et al. Deletion of IRF-1, mapping to chromosome 5q31.1, in human leukemia and preleukemic myelodysplasia. Science 1993; 259: 968–971.

    Article  CAS  PubMed  Google Scholar 

  14. Harada H, Kondo T, Ogawa S, Tamura T, Kitagawa M, Tanaka N et al. Accelerated exon skipping of IRF-1 mRNA in human myelodysplasia/leukemia; a possible mechanism of tumor suppressor inactivation. Oncogene 1994; 9: 3313–3320.

    CAS  PubMed  Google Scholar 

  15. Tzoanopoulos D, Speletas M, Arvanitidis K, Veiopoulou C, Kyriaki S, Thyphronitis G et al. Low expression of interferon regulatory factor-1 and identification of novel exons skipping in patients with chronic myeloid leukaemia. Br J Haematol 2002; 119: 46–53.

    Article  CAS  PubMed  Google Scholar 

  16. Taniguchi T, Lamphier MS, Tanaka N . IRF-1: the transcription factor linking the interferon response and oncogenesis. Biochem Biophys Acta 1997; 1333: M9–M17.

    CAS  PubMed  Google Scholar 

  17. Matsuyama T, Kimura T, Kitagawa M, Pfeffer K, Kawakami T, Watanabe N et al. Targeted disruption of IRF-1 or IRF-2 results in abnormal type I IFN gene induction and aberrant lymphocyte development. Cell 1993; 75: 83–97.

    Article  CAS  PubMed  Google Scholar 

  18. Reis LF, Harada H, Wolchok JD, Taniguchi T, Vilcek J . Critical role of a common transcription factor, IRF-1, in the regulation of IFN-β and IFN-inducible genes. EMBO J 1992; 11: 185–193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ogasawara K, Hida S, Azimi N, Tagaya Y, Sato T, Yokochi-Fukuda T et al. Requirement for IRF-1 in the microenvironment supporting development of natural killer cells. Nature 1998; 391: 700–703.

    Article  CAS  PubMed  Google Scholar 

  20. Penninger JM, Sirard C, Mittrucker HW, Chidgey A, Kozieradzki I, Nghiem M et al. The interferon regulatory transcription factor IRF-1 controls positive and negative selection of CD8+ thymocytes. Immunity 1997; 7: 243–254.

    Article  CAS  PubMed  Google Scholar 

  21. Lohoff M, Ferrick D, Mittrücker HW, Duncan GS, Bischof S, Röllinghoff M et al. Interferon regulatory factor-1 is required for a T helper 1 immune response in vivo. Immunity 1997; 5: 531–539.

    Google Scholar 

  22. Tamura T, Nagamura-Inoue T, Shmeltzer Z, Kuwata T, Ozato K . ICSBP directs bipotential myeloid progenitor cells to differentiate into mature macrophages. Immunity 2000; 13: 155–165.

    Article  CAS  PubMed  Google Scholar 

  23. Coccia EM, Stellacci E, Valtieri M, Masella B, Feccia T, Marziali G et al. Ectopic expression of interferon regulatory factor-1 potentiates granulocytic differentiation. Biochemical J 2001; 360: 285–294.

    Article  CAS  Google Scholar 

  24. Saura M, Zaragoza C, Bao C, McMillan A, Lowenstein CJ . Interaction of interferon regulatory factor-1 and nuclear factor κB during activation of inducible nitric oxide synthase transcription. J Mol Biol 1999; 289: 459–471.

    Article  CAS  PubMed  Google Scholar 

  25. Walkley CR, Yuan YD, Chandraratna RA, McArthus GA . Retinoic acid receptor antagonism in vivo expands the numbers of precursor cells during granulopoiesis. Leukemia 2002; 16: 1763–1772.

    Article  CAS  PubMed  Google Scholar 

  26. Westendorf JJ, Yamamoto CM, Lenny N, Downing JR, Selsted ME, Hiebert SW . The t(8;21) fusion product, AML-1-ETO, associated with C/EBP-alpha, inhibits C/EBP-alpha-dependent transcription, and blocks granulocytic differentiation. Mol Cell Biol 1998; 18: 322–333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pabst T, Mueller BU, Harakawa N, Schoch C, Haferlach T, Behre G et al. AML1-ETO downregulates the granulocytic differentiation factor C/EBPalpha in t(8;21) myeloid leukemia. Nat Med 2001; 7: 444–451.

    Article  CAS  PubMed  Google Scholar 

  28. Yamanaka R, Kim GD, Radomska HS, Lekstrom-Himes J, Smith LT, Antonson P et al. CCAAT/enhancer binding protein epsilon is preferentially up-regulated during granulocytic differentiation and its functional versatility is determined by alternative use of promoters and differential splicing. Proc Natl Acad Sci USA 1997; 94: 6462–6467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lekstrom-Himes J . The role of C/EBPɛ in the terminal stages of granulocyte differentiation. Stem Cells 2001; 19: 125–133.

    Article  CAS  PubMed  Google Scholar 

  30. Bellon T, Perrotti D, Calabretta B . Granulocytic differentiation of normal hematopoietic precursor cells induced by transcription factor PU.1 correlates with negative regulation of the c-myb promoter. Blood 1997; 90: 1828–1839.

    CAS  PubMed  Google Scholar 

  31. Liebermann DA, Hoffman B . Myeloid differentiation (MyD) primary response genes in hematopoiesis. Oncogene 2002; 21: 3391–3402.

    Article  CAS  PubMed  Google Scholar 

  32. Abdollahi A, Lord KA, Hoffman-Liebermann B, Liebermann DA . Interferon regulatory factor 1 is a myeloid differentiation primary response gene induced by interleukin 6 and leukemia inhibitory factor: role in growth inhibition. Cell Growth Differ 1991; 2: 401–407.

    CAS  PubMed  Google Scholar 

  33. Zhang DE, Zhang P, Wang ND, Hetherington CJ, Darlington GJ, Tenen DG . Absence of granulocyte colony-stimulating factor signaling and neutrophil development in CCAAT enhancer binding protein alpha-deficient mice. Proc Natl Acad Sci USA 1997; 94: 569–574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Scheller M, Foerster J, Heyworth CM, Waring JF, Lohler J, Gilmore GL et al. Altered development and cytokine responses of myeloid progenitors in the absence of transcription factor, interferon consensus sequence binding protein. Blood 1999; 94: 3764–3771.

    CAS  PubMed  Google Scholar 

  35. Tsujimura H, Nagamura-Inoue T, Tamura T, Ozato K . IFN consensus sequence binding protein/IFN regulatory factor-8 guides bone marrow progenitor cells toward the macrophage lineage. J Immunol 2002; 169: 1261–1269.

    Article  CAS  PubMed  Google Scholar 

  36. Sato M, Taniguchi T, Tanaka N . The interferon system and interferon regulatory factor transcription factors – studies from gene knockout mice. Cytokine Growth Factor Rev 2001; 12: 133–142.

    Article  CAS  PubMed  Google Scholar 

  37. Socolovsky M, Nam H, Fleming MD, Haase VH, Brugnara C, Lodish HF . Ineffective erythropoiesis in Stat5a(−/−)5b(−/−) mice due to decreased survival of early erythroblasts. Blood 2001; 98: 3261–3273.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Sabrina Tocchio for secretarial and editorial assistance and Roberto Gilardi for preparing graphs. This work was partially supported by Institutional grants from the Istituto Superiore di Sanità, 1% Projects, and Special Project on AIDS to AB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Battistini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Testa, U., Stellacci, E., Pelosi, E. et al. Impaired myelopoiesis in mice devoid of interferon regulatory factor 1. Leukemia 18, 1864–1871 (2004). https://doi.org/10.1038/sj.leu.2403472

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403472

Keywords

This article is cited by

Search

Quick links