Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Generation of B-cell chronic lymphocytic leukemia (B-CLL)-reactive T-cell lines and clones from HLA class I-matched donors using modified B-CLL cells as stimulators: implications for adoptive immunotherapy

Abstract

Allogeneic stem cell transplantation following reduced-intensity conditioning is being evaluated in patients with advanced B-cell chronic lymphocytic leukemia (B-CLL). The curative potential of this procedure is mediated by donor-derived alloreactive T cells, resulting in a graft-versus-leukemia effect. However, B-CLL may escape T-cell-mediated immune reactivity since these cells lack expression of costimulatory molecules. We examined the most optimal method to transform B-CLL cells into efficient antigen-presenting cells (APC) using activating cytokines, by triggering toll-like receptors (TLRs) using microbial pathogens and by CD40 stimulation with CD40L-transfected fibroblasts. CD40 activation in the presence of IL-4 induced strongest upregulation of costimulatory and adhesion molecules on B-CLL cells and induced the production of high amounts of IL-12 by the leukemic cells. In contrast to primary B-CLL cells as stimulator cells, these malignant APCs were capable of inducing the generation of B-CLL-reactive CD8+ CTL lines and clones from HLA class I-matched donors. These CTL lines and clones recognized and killed primary B-CLL as well as patient-derived lymphoblasts, but not donor cells. These results show the feasibility of ex vivo generation of B-CLL-reactive CD8+ CTLs. This opens new perspectives for adoptive immunotherapy, following allogeneic stem cell transplantation in patients with advanced B-CLL.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Rozman C, Montserrat E . Chronic lymphocytic leukemia. N Engl J Med 1995; 333: 1052–1057.

    Article  CAS  Google Scholar 

  2. Rai KR, Peterson BL, Appelbaum FR, Kolitz J, Elias L, Shepherd L et al. Fludarabine compared with chlorambucil as primary therapy for chronic lymphocytic leukemia. N Engl J Med 2000; 343: 1750–1757.

    Article  CAS  Google Scholar 

  3. Rai KR, Freter CE, Mercier RJ, Cooper MR, Mitchell BS, Stadtmauer EA et al. Alemtuzumab in previously treated chronic lymphocytic leukemia patients who also had received fludarabine. J Clin Oncol 2002; 20: 3891–3897.

    Article  CAS  Google Scholar 

  4. Keating MJ, Flinn I, Jain V, Binet JL, Hillmen P, Byrd J et al. Therapeutic role of alemtuzumab (Campath-1H) in patients who have failed fludarabine: results of a large international study. Blood 2002; 99: 3554–3561.

    Article  CAS  Google Scholar 

  5. Mavromatis B, Cheson BD . Monoclonal antibody therapy of chronic lymphocytic leukemia. J Clin Oncol 2003; 21: 1874–1881.

    Article  CAS  Google Scholar 

  6. Dreger P, Montserrat E . Autologous and allogeneic stem cell transplantation for chronic lymphocytic leukemia. Leukemia 2002; 16: 985–992.

    Article  CAS  Google Scholar 

  7. Doney KC, Chauncey T, Appelbaum FR . Allogeneic related donor hematopoietic stem cell transplantation for treatment of chronic lymphocytic leukemia. Bone Marrow Transplant 2002; 29: 817–823.

    Article  CAS  Google Scholar 

  8. Khouri IF, Keating M, Korbling M, Przepiorka D, Anderlini P, O'Brien S et al. Transplant-lite: induction of graft-versus-malignancy using fludarabine-based nonablative chemotherapy and allogeneic blood progenitor-cell transplantation as treatment for lymphoid malignancies. J Clin Oncol 1998; 16: 2817–2824.

    Article  CAS  Google Scholar 

  9. Schetelig J, Thiede C, Bornhauser M, Schwerdtfeger R, Kiehl M, Beyer J et al. Evidence of a graft-versus-leukemia effect in chronic lymphocytic leukemia after reduced-intensity conditioning and allogeneic stem-cell transplantation: the Cooperative German Transplant Study Group. J Clin Oncol 2003; 21: 2747–2753.

    Article  CAS  Google Scholar 

  10. Barge RM, Osanto S, Marijt WA, Starrenburg CW, Fibbe WE, Nortier JW et al. Minimal GVHD following in-vitro Tcell-depleted allogeneic stem cell transplantation with reduced-intensity conditioning allowing subsequent infusions of donor lymphocytes in patients with hematological malignancies and solid tumors. Exp Hematol 2003; 31: 865–872.

    Article  CAS  Google Scholar 

  11. Dreger P, Brand R, Hansz J, Milligan D, Corradini P, Finke J et al. Treatment-related mortality and graft-versus-leukemia activity after allogeneic stem cell transplantation for chronic lymphocytic leukemia using intensity-reduced conditioning. Leukemia 2003; 17: 841–848.

    Article  CAS  Google Scholar 

  12. Marijt WA, Heemskerk MH, Kloosterboer FM, Goulmy E, Kester MG, van der Hoorn MA et al. Hematopoiesis-restricted minor histocompatibility antigens HA-1- or HA-2-specific T cells can induce complete remissions of relapsed leukemia. Proc Natl Acad Sci USA 2003; 100: 2742–2747.

    Article  CAS  Google Scholar 

  13. Buhmann R, Nolte A, Westhaus D, Emmerich B, Hallek M . CD40-activated B-cell chronic lymphocytic leukemia cells for tumor immunotherapy: stimulation of allogeneic versus autologous T cells generates different types of effector cells. Blood 1999; 93: 1992–2002.

    CAS  PubMed  Google Scholar 

  14. Ranheim EA, Cantwell MJ, Kipps TJ . Expression of CD27 and its ligand, CD70, on chronic lymphocytic leukemia B cells. Blood 1995; 85: 3556–3565.

    CAS  PubMed  Google Scholar 

  15. Ranheim EA, Kipps TJ . Activated T cells induce expression of B7/BB1 on normal or leukemic B cells through a CD40-dependent signal. J Exp Med 1993; 177: 925–935.

    Article  CAS  Google Scholar 

  16. Schultze J, Nadler LM, Gribben JG . B7-mediated costimulation and the immune response. Blood Rev 1996; 10: 111–127.

    Article  CAS  Google Scholar 

  17. Wierda WG, Cantwell MJ, Woods SJ, Rassenti LZ, Prussak CE, Kipps TJ . CD40-ligand (CD154) gene therapy for chronic lymphocytic leukemia. Blood 2000; 96: 2917–2924.

    CAS  Google Scholar 

  18. Kato K, Cantwell MJ, Sharma S, Kipps TJ . Gene transfer of CD40-ligand induces autologous immune recognition of chronic lymphocytic leukemia B cells. J Clin Invest 1998; 101: 1133–1141.

    Article  CAS  Google Scholar 

  19. Banchereau J, Bazan F, Blanchard D, Briere F, Galizzi JP, van Kooten C et al. The CD40 antigen and its ligand. Annu Rev Immunol 1994; 12: 881–922.

    Article  CAS  Google Scholar 

  20. Kondo E, Topp MS, Kiem HP, Obata Y, Morishima Y, Kuzushima K et al. Efficient generation of antigen-specific cytotoxic T cells using retrovirally transduced CD40-activated B cells. J Immunol 2002; 169: 2164–2171.

    Article  CAS  Google Scholar 

  21. Krackhardt AM, Harig S, Witzens M, Broderick R, Barrett P, Gribben JG . T-cell responses against chronic lymphocytic leukemia cells: implications for immunotherapy. Blood 2002; 100: 167–173.

    Article  CAS  Google Scholar 

  22. Bauer M, Redecke V, Ellwart JW, Scherer B, Kremer JP, Wagner H et al. Bacterial CpG-DNA triggers activation and maturation of human CD11c-, CD123+ dendritic cells. J Immunol 2001; 166: 5000–5007.

    Article  CAS  Google Scholar 

  23. Verdijk RM, Mutis T, Esendam B, Kamp J, Melief CJ, Brand A et al. Polyriboinosinic polyribocytidylic acid (poly(I:C)) induces stable maturation of functionally active human dendritic cells. J Immunol 1999; 163: 57–61.

    CAS  Google Scholar 

  24. Aderem A, Ulevitch RJ . Toll-like receptors in the induction of the innate immune response. Nature 2000; 406: 782–787.

    Article  CAS  Google Scholar 

  25. Bourke E, Bosisio D, Golay J, Polentarutti N, Mantovani A . The toll-like receptor repertoire of human B lymphocytes: inducible and selective expression of TLR9 and TLR10 in normal and transformed cells. Blood 2003; 102: 956–963.

    Article  Google Scholar 

  26. Bernasconi NL, Onai N, Lanzavecchia A . A role for Toll-like receptors in acquired immunity: up-regulation of TLR9 by BCR triggering in naive B cells and constitutive expression in memory B cells. Blood 2003; 101: 4500–4504.

    Article  CAS  Google Scholar 

  27. Krieg AM, Yi AK, Matson S, Waldschmidt TJ, Bishop GA, Teasdale R et al. CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 1995; 374: 546–549.

    Article  CAS  Google Scholar 

  28. Mongini PK, Tolani S, Fattah RJ, Inman JK . Antigen receptor triggered upregulation of CD86 and CD80 in human B cells: augmenting role of the CD21/CD19 co-stimulatory complex and IL-4. Cell Immunol 2002; 216: 50–64.

    Article  CAS  Google Scholar 

  29. Caux C, Vanbervliet B, Massacrier C, Durand I, Banchereau J . Interleukin-3 cooperates with tumor necrosis factor alpha for the development of human dendritic/Langerhans cells from cord blood CD34+ hematopoietic progenitor cells. Blood 1996; 87: 2376–2385.

    CAS  Google Scholar 

  30. Saunders D, Lucas K, Ismaili J, Wu L, Maraskovsky E, Dunn A et al. Dendritic cell development in culture from thymic precursor cells in the absence of granulocyte/macrophage colony-stimulating factor. J Exp Med 1996; 184: 2185–2196.

    Article  CAS  Google Scholar 

  31. Banchereau J, Rousset F . Growing human B lymphocytes in the CD40 system. Nature 1991; 353: 678–679.

    Article  CAS  Google Scholar 

  32. Faber LM, van der HJ, Goulmy E, Hooftman-den Otter AL, Luxemburg-Heijs SA, Willemze R et al. Recognition of clonogenic leukemic cells, remission bone marrow and HLA-identical donor bone marrow by CD8+ or CD4+ minor histocompatibility antigen-specific cytotoxic T lymphocytes. J Clin Invest 1995; 96: 877–883.

    Article  CAS  Google Scholar 

  33. Van den Hove LE, Van Gool SW, Vandenberghe P, Bakkus M, Thielemans K, Boogaerts MA et al. CD40 triggering of chronic lymphocytic leukemia B cells results in efficient alloantigen presentation and cytotoxic T lymphocyte induction by up-regulation of CD80 and CD86 costimulatory molecules. Leukemia 1997; 11: 572–580.

    Article  CAS  Google Scholar 

  34. Decker T, Schneller F, Sparwasser T, Tretter T, Lipford GB, Wagner H et al. Immunostimulatory CpG-oligonucleotides cause proliferation, cytokine production, and an immunogenic phenotype in chronic lymphocytic leukemia B cells. Blood 2000; 95: 999–1006.

    CAS  PubMed  Google Scholar 

  35. Banchereau J, de Paoli P, Valle A, Garcia E, Rousset F . Long-term human B cell lines dependent on interleukin-4 and antibody to CD40. Science 1991; 251: 70–72.

    Article  CAS  Google Scholar 

  36. Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H et al. A Toll-like receptor recognizes bacterial DNA. Nature 2000; 408: 740–745.

    Article  CAS  Google Scholar 

  37. Bauer S, Kirschning CJ, Hacker H, Redecke V, Hausmann S, Akira S et al. Human TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition. Proc Natl Acad Sci USA 2001; 98: 9237–9242.

    Article  CAS  Google Scholar 

  38. Cella M, Scheidegger D, Palmer-Lehmann K, Lane P, Lanzavecchia A, Alber G . Ligation of CD40 on dendritic cells triggers production of high levels of interleukin-12 and enhances T cell stimulatory capacity: T-T help via APC activation. J Exp Med 1996; 184: 747–752.

    Article  CAS  Google Scholar 

  39. Gately MK, Renzetti LM, Magram J, Stern AS, Adorini L, Gubler U et al. The interleukin-12/interleukin-12-receptor system: role in normal and pathologic immune responses. Annu Rev Immunol 1998; 16: 495–521.

    Article  CAS  Google Scholar 

  40. Airoldi I, Guglielmino R, Ghiotto F, Corcione A, Facchetti P, Truini M et al. Cytokine gene expression in neoplastic B cells from human mantle cell, follicular, and marginal zone lymphomas and in their postulated normal counterparts. Cancer Res 2001; 61: 1285–1290.

    CAS  PubMed  Google Scholar 

  41. Schultze JL, Michalak S, Lowne J, Wong A, Gilleece MH, Gribben JG et al. Human non-germinal center B cell interleukin (IL)-12 production is primarily regulated by T cell signals CD40 ligand, interferon gamma, and IL-10: role of B cells in the maintenance of T cell responses. J Exp Med 1999; 189: 1–12.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Hoogendoorn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoogendoorn, M., Wolbers, J., Smit, W. et al. Generation of B-cell chronic lymphocytic leukemia (B-CLL)-reactive T-cell lines and clones from HLA class I-matched donors using modified B-CLL cells as stimulators: implications for adoptive immunotherapy. Leukemia 18, 1278–1287 (2004). https://doi.org/10.1038/sj.leu.2403358

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403358

Keywords

This article is cited by

Search

Quick links