Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

FLJ10849, a septin family gene, fuses MLL in a novel leukemia cell line CNLBC1 derived from chronic neutrophilic leukemia in transformation with t(4;11)(q21;q23)

Abstract

A t(4;11)(q21;q23) has been described in 50–70% of cases of infant acute lymphoblastic leukemia and, less frequently, in cases of pediatric and adult acute lymphoblastic leukemia and acute myeloid leukemia (AML). In t(4;11)(q21;q23) leukemias, the AF4 gene has been cloned as a fusion partner of the MLL gene. A human myeloid leukemia cell line, chronic neutrophilic leukemia (CNL)BC1, was established from a peripheral blood specimen of a patient with CNL in leukemic transformation. As with the original leukemia cells, the established line had a t(4;11)(q21;q23). We showed that the MLL gene on 11q23 was fused to the FLJ10849 gene on 4q21. The protein encoded by FLJ10849 belongs to the septin family, sharing highest homology with human SEPT6, which is one of the fusion partners of MLL in t(X;11)(q13;q23) AML. Our results suggest that FLJ10849 might define a new septin family particularly involved in the pathogenesis of 11q23-associated leukemia. The established cell line, CNLBC1, could provide a useful model for analyzing the pathogenesis of MLL-septin leukemias and chronic neutrophilic leukemia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Zittoun R, Rea D, Ngoc LH, Ramond S . Chronic neutrophilic leukemia. A study of four cases. Ann Haematol 1994; 68: 55–60.

    Article  CAS  Google Scholar 

  2. Reilly JT . Chronic neutrophilic leukaemia: a distinct clinical entity? Br J Haematol 2002; 116: 10–18.

    Article  PubMed  Google Scholar 

  3. Tuohy EL . A case of splenomegaly with polymorphonuclear neutrophil hyperleukocytosis. Am J Med Sci 1920; 160: 18–25.

    Article  Google Scholar 

  4. Huret JL . 11q23 rearrangements in leukaemia. Atlas Genet Cytogenet Oncol Haematol. August 2003. URL: http://www.infobiogen.fr/services/chromcancer/Anomalies/11q23ID1030.html.

  5. Drexler HG, Quentmeier H, MacLeod RAF . Malignant hematopoietic cell lines: in vitro models for the study of MLL gene alterations. Leukemia 2004; 18: 227–232.

    Article  CAS  PubMed  Google Scholar 

  6. Ayton PM, Cleary ML . Molecular mechanisms of leukemogenesis mediated by MLL fusion proteins. Oncogene 2001; 20: 5695–5707.

    Article  CAS  PubMed  Google Scholar 

  7. Corral J, Lavenir I, Impey H, Warren AJ, Forster A, Larson TA et al. An Mll-AF9 fusion gene made by homologous recombination causes acute leukemia in chimeric mice: a method to create fusion oncogenes. Cell 1996; 85: 853–861.

    Article  CAS  PubMed  Google Scholar 

  8. Lavau C, Szilvassy SJ, Slany R, Cleary ML . Immortalization and leukemic transformation of a myelomonocytic precursor by retrovirally transduced HRX-ENL. EMBO J 1997; 16: 4226–4237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yamamoto K, Seto M, Komatsu H, Iida S, Akao Y, Kojima S et al. Two distinct portions of LTG19/ENL at 19p13 are involved in t(11;19) leukemia. Oncogene 1993; 8: 2617–2625.

    CAS  PubMed  Google Scholar 

  10. Chaplin T, Ayton P, Bernard OA, Saha V, Della Valle V, Hillion J et al. A novel class of zinc finger/leucine zipper genes identified from the molecular cloning of the t(10;11) translocation in acute leukemia. Blood 1995; 85: 1435–1441.

    CAS  PubMed  Google Scholar 

  11. Prasad R, Leshkowitz D, Gu Y, Alder H, Nakamura T, Saito H et al. Leucine-zipper dimerization motif encoded by the AF17 gene fused to ALL-1 (MLL) in acute leukemia. Proc Natl Acad Sci USA 1994; 91: 8107–8111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Borkhardt A, Repp R, Haas OA, Leis T, Harbott J, Kreuder J et al. Cloning and characterization of AFX, the gene that fuses to MLL in acute leukemias with a t(X;11)(q13;q23). Oncogene 1997; 14: 195–202.

    Article  CAS  PubMed  Google Scholar 

  13. Hillion J, Le Coniat M, Jonveaux P, Berger R, Bernard OA . AF6q21, a novel partner of the MLL gene in t(6;11)(q21;q23), defines a forkhead transcriptional factor subfamily. Blood 1997; 90: 3714–3719.

    CAS  PubMed  Google Scholar 

  14. Taki T, Sako M, Tsuchida M, Hayashi Y . The t(11;16)(q23;p13) translocation in myelodysplastic syndrome fuses the MLL gene to the CBP gene. Blood 1997; 89: 3945–3950.

    CAS  PubMed  Google Scholar 

  15. Ida K, Kitabayashi I, Taki T, Taniwaki M, Noro K, Yamamoto M et al. Adenoviral E1A-associated protein p300 is involved in acute myeloid leukemia with t(11;22)(q23;q13). Blood 1997; 90: 4699–4704.

    CAS  PubMed  Google Scholar 

  16. Beites CL, Xie H, Bowser R, Trimble WS . The septin CDCrel-1 binds syntaxin and inhibits exocytosis. Nat Neurosci 1999; 2: 434–439.

    Article  CAS  PubMed  Google Scholar 

  17. Larisch S, Yi Y, Lotan R, Kerner H, Eimerl S, Tony Parks W et al. A novel mitochondrial septin-like protein, ARTS, mediates apoptosis dependent on its P-loop motif. Nat Cell Biol 2000; 2: 915–921.

    Article  CAS  PubMed  Google Scholar 

  18. Kartmann B, Roth D . Novel roles for mammalian septins: from vesicle trafficking to oncogenesis. J Cell Sci 2001; 114: 839–844.

    CAS  PubMed  Google Scholar 

  19. Macara IG, Baldarelli R, Field CM, Glotzer M, Hayashi Y, Hsu SC et al. Mammalian septins nomenclature. Mol Biol Cell 2002; 13: 4111–4113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Megonigal MD, Rappaport EF, Jones DH, Williams TM, Lovett BD, Kelly KM et al. t(11;22) (q23;q11.2) in acute myeloid leukemia of infant twins fuses MLL with hCDCrel, a cell division cycle gene in the genomic region of deletion in DiGeorge and velocardiofacial syndromes. Proc Natl Acad Sci USA 1998; 95: 6413–6418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tatsumi K, Taki T, Taniwaki M, Nakamura H, Taguchi J, Chen YZ et al. The CDCREL1 gene fused to MLL in de novo acute myeloid leukemia with t(11;22)(q23;q11.2) and its frequent expression in myeloid leukemia cell lines. Genes Chromosomes Cancer 2001; 30: 230–235.

    Article  CAS  PubMed  Google Scholar 

  22. Slater DJ, Hilgenfeld E, Rappaport EF, Shah N, Meek RG, Williams WR et al. MLL-SEPTIN6 fusion recurs in novel translocation of chromosomes 3, X, and 11 in infant acute myelomonocytic leukaemia and in t(X;11) in infant acute myeloid leukaemia, and MLL genomic breakpoint in complex MLL-SEPTIN6 rearrangement is a DNA topoisomerase II cleavage site. Oncogene 2002; 21: 4706–4714.

    Article  CAS  PubMed  Google Scholar 

  23. Ono R, Taki T, Taketani T, Kawaguchi H, Taniwaki M, Okamura T et al. SEPTIN6, a human homologue to mouse Septin6, is fused to MLL in infant acute myeloid leukemia with complex chromosomal abnormalities involving 11q23 and Xq24. Cancer Res 2002; 62: 333–337.

    CAS  PubMed  Google Scholar 

  24. Osaka M, Rowley JD, Zeleznik-Le NJ . MSF (MLL septin-like fusion), a fusion partner gene of MLL, in a therapy-related acute myeloid leukemia with a t(11;17)(q23;q25). Proc Natl Acad Sci USA 1999; 96: 6428–6433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Taki T, Ohnishi H, Shinohara K, Sako M, Bessho F, Yanagisawa M et al. AF17q25, a putative septin family gene, fuses the MLL gene in acute myeloid leukemia with t(11;17)(q23;q25). Cancer Res 1999; 59: 4261–4265.

    CAS  PubMed  Google Scholar 

  26. Gu Y, Nakamura T, Alder H, Prasad R, Canaani O, Cimino G et al. The t(4;11) chromosome translocation of human acute leukemias fuses the ALL-1 gene, related to Drosophila trithorax, to the AF-4 gene. Cell 1992; 71: 701–708.

    Article  CAS  PubMed  Google Scholar 

  27. Domer PH, Fakharzadeh SS, Chen CS, Jockel J, Johansen L, Silverman GA et al. Acute mixed-lineage leukemia t(4;11)(q21;q23) generates an MLL-AF4 fusion product. Proc Natl Acad Sci USA 1993; 90: 7884–7888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Matsuo Y, MacLeod RA, Uphoff CC, Drexler HG, Nishizaki C, Katayama Y et al. Two acute monocytic leukemia (AML-M5a) cell lines (MOLM-13 and MOLM-14) with interclonal phenotypic heterogeneity showing MLL-AF9 fusion resulting from an occult chromosome insertion, ins(11;9)(q23;p22p23). Leukemia 1997; 11: 1469–1477.

    Article  CAS  PubMed  Google Scholar 

  29. Matsuo Y, MacLeod RA, Kojima K, Kuwahara K, Sakata A, Drexler HG et al. A novel ALL-L3 cell line, BALM-16, lacking expression of immunoglobulin chains derived from a patient with hypercalcemia. Leukemia 1997; 11: 2168–2174.

    Article  CAS  PubMed  Google Scholar 

  30. Thirman MJ, Gill HJ, Burnett RC, Mbangkollo D, McCabe NR, Kobayashi H et al. Rearrangement of the MLL gene in acute lymphoblastic and acute myeloid leukemias with 11q23 chromosomal translocations. N Engl J Med 1993; 329: 909–914.

    Article  CAS  PubMed  Google Scholar 

  31. Nilson I, Lochner K, Siegler G, Greil J, Beck JD, Fey GH et al. Exon/intron structure of the human ALL-1 (MLL) gene involved in translocations to chromosomal region 11q23 and acute leukaemias. Br J Haematol 1996; 93: 966–972.

    Article  CAS  PubMed  Google Scholar 

  32. Megonigal MD, Rappaport EF, Wilson RB, Jones DH, Whitlock JA, Ortega JA et al. Panhandle PCR for cDNA: a rapid method for isolation of MLL fusion transcripts involving unknown partner genes. Proc Natl Acad Sci USA 2000; 97: 9597–9602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lange B, Valtieri M, Santoli D, Caracciolo D, Mavilio F, Gemperlein I et al. Growth factor requirements of childhood acute leukemia: establishment of GM-CSF-dependent cell lines. Blood 1987; 70: 192–199.

    CAS  PubMed  Google Scholar 

  34. Kozak M . Interpreting cDNA sequences: some insights from studies on translation. Mamm Genome 1996; 7: 563–574.

    Article  CAS  PubMed  Google Scholar 

  35. Taki T, Shibuya N, Taniwaki M, Hanada R, Morishita K, Bessho F et al. ABI-1, a human homolog to mouse Abl-interactor 1, fuses the MLL gene in acute myeloid leukemia with t(10;11) (p11.2;q23). Blood 1998; 92: 1125–1130.

    CAS  PubMed  Google Scholar 

  36. Thirman MJ, Levitan DA, Kobayashi H, Simon MC, Rowley JD . Cloning of ELL, a gene that fuses to MLL in a t(11;19)(q23;p13.1) in acute myeloid leukemia. Proc Natl Acad Sci USA 1994; 91: 12110–12114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mitani K, Kanda Y, Ogawa S, Tanaka T, Inazawa J, Yazaki Y et al. Cloning of several species of MLL/MEN chimeric cDNAs in myeloid leukemia with t(11;19)(q23;p13.1) translocation. Blood 1995; 85: 2017–2024.

    CAS  PubMed  Google Scholar 

  38. So CW, Caldas C, Liu MM, Chen SJ, Huang QH, Gu LJ et al. EEN encodes for a member of a new family of proteins containing an Src homology 3 domain and is the third gene located on chromosome 19p13 that fuses to MLL in human leukemia. Proc Natl Acad Sci USA 1997; 94: 2563–2568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Raimondi SC, Chang MN, Ravindranath Y, Behm FG, Gresik MV, Steuber CP et al. Chromosomal abnormalities in 478 children with acute myeloid leukemia: clinical characteristics and treatment outcome in a cooperative pediatric oncology group study – POG 8821. Blood 1999; 94: 3707–3716.

    CAS  PubMed  Google Scholar 

  40. Abshire TC, Buchanan GR, Jackson JF, Shuster JJ, Brock B, Head D et al. Morphologic, immunologic and cytogenetic studies in children with acute lymphoblastic leukemia at diagnosis and relapse: a Pediatric Oncology Group study. Leukemia 1992; 6: 357–362.

    CAS  PubMed  Google Scholar 

  41. Mitelman F, Heim S, Mandahl N . Trisomy 21 in neoplastic cells. Am J Med Genet Suppl 1990; 7: 262–266.

    CAS  PubMed  Google Scholar 

  42. Hartwell LH . Genetic control of the cell division cycle in yeast. IV. Genes controlling bud emergence and cytokinesis. Exp Cell Res 1971; 69: 265–276.

    Article  CAS  PubMed  Google Scholar 

  43. Longtine MS, Theesfeld CL, McMillan JN, Weaver E, Pringle JR, Lew DJ . Septin-dependent assembly of a cell cycle-regulatory module in Saccharomyces cerevisiae. Mol Cell Biol 2000; 20: 4049–4061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Shulewitz MJ, Inouye CJ, Thorner J . Hsl7 localizes to a septin ring and serves as an adapter in a regulatory pathway that relieves tyrosine phosphorylation of Cdc28 protein kinase in Saccharomyces cerevisiae. Mol Cell Biol 1999; 19: 7123–7137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Barral Y, Parra M, Bidlingmaier S, Snyder M . Nim1-related kinases coordinate cell cycle progression with the organization of the peripheral cytoskeleton in yeast. Genes Dev 1999; 13: 176–187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tanaka M, Tanaka T, Kijima H, Itoh J, Matsuda T, Hori S et al. Characterization of tissue- and cell-type-specific expression of a novel human septin family gene, Bradeion. Biochem Biophys Res Commun 2001; 286: 547–553.

    Article  CAS  PubMed  Google Scholar 

  47. Sakai K, Kurimoto M, Tsugu A, Hubbard SL, Trimble WS, Rutka JT . Expression of Nedd5, a mammalian septin, in human brain tumors. J Neurooncol 2002; 57: 169–177.

    Article  PubMed  Google Scholar 

  48. Tanaka M, Tanaka T, Matsuzaki S, Seto Y, Matsuda T, Komori K et al. Rapid and quantitative detection of human septin family Bradeion as a practical diagnostic method of colorectal and urologic cancers. Med Sci Monit 2003; 9: MT61–68.

    CAS  PubMed  Google Scholar 

  49. Montagna C, Lyu MS, Hunter K, Lukes L, Lowther W, Reppert T et al. The Septin 9 (MSF) gene is amplified and overexpressed in mouse mammary gland adenocarcinomas and human breast cancer cell lines. Cancer Res 2003; 63: 2179–2187.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded in part by a grant from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Kojima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kojima, K., Sakai, I., Hasegawa, A. et al. FLJ10849, a septin family gene, fuses MLL in a novel leukemia cell line CNLBC1 derived from chronic neutrophilic leukemia in transformation with t(4;11)(q21;q23). Leukemia 18, 998–1005 (2004). https://doi.org/10.1038/sj.leu.2403334

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403334

Keywords

This article is cited by

Search

Quick links