Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

IL-6 regulates CD44 cell surface expression on human myeloma cells

Abstract

Multiple myeloma (MM) is a progressive B-lineage neoplasia characterized by the accumulation of slow proliferative malignant plasma cells in the bone marrow compartment where the microenvironment seems to be favorable for their growth and survival. Heparan sulfate proteoglycans such as syndecan-1 and CD44 are thought to play a central role in the survival signals provided by these bone marrow survival niches, which require complex interactions between myeloma cells, extracellular matrix, stromal cells and soluble factors. In this report, we demonstrate that interleukin-6 (IL-6), the main survival and growth factor for myeloma cells, strongly increases CD44 gene expression. In addition, we show that IL-6 modulates CD44 RNA alternative splicing and induces the overexpression of all CD44 variant exons. Finally, we show that IL-6-induced CD44 cell surface molecules have a functional polarized membrane distribution. As IL-6 secretion induced from bone marrow stromal cells by myeloma cells is partly mediated through direct cell-to-cell interaction involving CD44 adhesion molecules, our findings suggest that a CD44/IL-6 amplification loop plays a crucial role in myeloma cell survival.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Anderson KC, Kyle RA, Dalton WS, Landowski T, Shain K, Jove R et al. Multiple myeloma: new insights and therapeutic approaches. Hematology (Am Soc Hematol Educ Program) 2000, 147–165.

  2. Bataille R, Harousseau JL . Multiple myeloma. N Engl J Med 1997; 336: 1657–1664.

    Article  CAS  PubMed  Google Scholar 

  3. Shain KH, Landowski TH, Dalton WS . The tumor microenvironment as a determinant of cancer cell survival: a possible mechanism for de novo drug resistance. Curr Opin Oncol 2000; 12: 557–563.

    Article  CAS  PubMed  Google Scholar 

  4. Vincent T, Jourdan M, Sy MS, Klein B, Mechti N . Hyaluronic acid induces survival and proliferation of human myeloma cells through an interleukin-6-mediated pathway involving the phosphorylation of retinoblastoma protein. J Biol Chem 2001; 276: 14728–14736.

    Article  CAS  PubMed  Google Scholar 

  5. Chauhan D, Kharbanda S, Ogata A, Urashima M, Teoh G, Robertson M et al. Interleukin-6 inhibits Fas-induced apoptosis and stress-activated protein kinase activation in multiple myeloma cells. Blood 1997; 89: 227–234.

    CAS  PubMed  Google Scholar 

  6. Klein B, Zhang XG, Jourdan M, Boiron JM, Portier M, Lu ZY et al. Interleukin-6 is the central tumor growth factor in vitro and in vivo in multiple myeloma. Eur Cytokine Netw 1990; 1: 193–201.

    CAS  PubMed  Google Scholar 

  7. Klein B, Zhang XG, Lu ZY, Bataille R . Interleukin-6 in human multiple myeloma. Blood 1995; 85: 863–872.

    CAS  PubMed  Google Scholar 

  8. Lichtenstein A, Tu Y, Fady C, Vescio R, Berenson J . Interleukin-6 inhibits apoptosis of malignant plasma cells. Cell Immunol 1995; 162: 248–255.

    Article  CAS  PubMed  Google Scholar 

  9. Treon SP, Anderson KC . Interleukin-6 in multiple myeloma and related plasma cell dyscrasias. Curr Opin Hematol 1998; 5: 42–48.

    Article  CAS  PubMed  Google Scholar 

  10. Barille S, Thabard W, Robillard N, Moreau P, Pineau D, Harousseau JL et al. CD130 rather than CD126 expression is associated with disease activity in multiple myeloma. Br J Haematol 1999; 106: 532–535.

    Article  CAS  PubMed  Google Scholar 

  11. Bataille R, Jourdan M, Zhang XG, Klein B . Serum levels of interleukin 6, a potent myeloma cell growth factor, as a reflect of disease severity in plasma cell dyscrasias. J Clin Invest 1989; 84: 2008–2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bataille R, Barlogie B, Lu ZY, Rossi JF, Lavabre-Bertrand T, Beck T et al. Biologic effects of anti-interleukin-6 murine monoclonal antibody in advanced multiple myeloma. Blood 1995; 86: 685–691.

    CAS  PubMed  Google Scholar 

  13. Klein B, Wijdenes J, Zhang XG, Jourdan M, Boiron JM, Brochier J et al. Murine anti-interleukin-6 monoclonal antibody therapy for a patient with plasma cell leukemia. Blood 1991; 78: 1198–1204.

    CAS  PubMed  Google Scholar 

  14. Degrassi A, Hilbert DM, Rudikoff S, Anderson AO, Potter M, Coon HG . In vitro culture of primary plasmacytomas requires stromal cell feeder layers. Proc Natl Acad Sci USA 1993; 90: 2060–2064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Uchiyama H, Barut BA, Mohrbacher AF, Chauhan D, Anderson KC . Adhesion of human myeloma-derived cell lines to bone marrow stromal cells stimulates interleukin-6 secretion. Blood 1993; 82: 3712–3720.

    CAS  PubMed  Google Scholar 

  16. Chauhan D, Uchiyama H, Akbarali Y, Urashima M, Yamamoto K, Libermann TA et al. Multiple myeloma cell adhesion-induced interleukin-6 expression in bone marrow stromal cells involves activation of NF-kappa B. Blood 1996; 87: 1104–1112.

    CAS  PubMed  Google Scholar 

  17. Lokhorst HM, Lamme T, de Smet M, Klein S, de Weger RA, van Oers R et al. Primary tumor cells of myeloma patients induce interleukin-6 secretion in long-term bone marrow cultures. Blood 1994; 84: 2269–2277.

    CAS  PubMed  Google Scholar 

  18. Barille S, Collette M, Bataille R, Amiot M . Myeloma cells upregulate interleukin-6 secretion in osteoblastic cells through cell-to-cell contact but downregulate osteocalcin. Blood 1995; 86: 3151–3159.

    CAS  PubMed  Google Scholar 

  19. Shain KH, Landowski TH, Dalton WS . Adhesion-mediated intracellular redistribution of c-Fas-associated death domain-like IL-1-converting enzyme-like inhibitory protein-long confers resistance to CD95-induced apoptosis in hematopoietic cancer cell lines. J Immunol 2002; 168: 2544–2553.

    Article  CAS  PubMed  Google Scholar 

  20. Damiano JS, Dalton WS . Integrin-mediated drug resistance in multiple myeloma. Leukemia Lymphoma 2000; 38: 71–81.

    Article  CAS  PubMed  Google Scholar 

  21. Damiano JS, Cress AE, Hazlehurst LA, Shtil AA, Dalton WS . Cell adhesion mediated drug resistance (CAM-DR): role of integrins and resistance to apoptosis in human myeloma cell lines. Blood 1999; 93: 1658–1667.

    CAS  PubMed  Google Scholar 

  22. Gunthert U . CD44: a multitude of isoforms with diverse functions. Curr Top Microbiol Immunol 1993; 184: 47–63.

    CAS  PubMed  Google Scholar 

  23. Borland G, Ross JA, Guy K . Forms and functions of CD44. Immunology 1998; 93: 139–148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Van Driel M, Gunthert U, Stauder R, Joling P, Lokhorst HM, Bloem AC . CD44 isoforms distinguish between bone marrow plasma cells from normal individuals and patients with multiple myeloma at different stages of disease. Leukemia 1998; 12: 1821–1828.

    Article  CAS  PubMed  Google Scholar 

  25. Van Driel M, Gunthert U, van Kessel AC, Joling P, Stauder R, Lokhorst HM et al. CD44 variant isoforms are involved in plasma cell adhesion to bone marrow stromal cells. Leukemia 2002; 16: 135–143.

    Article  CAS  PubMed  Google Scholar 

  26. Eisterer W, Bechter O, Hilbe W, van Driel M, Lokhorst HM, Thaler J et al. CD44 isoforms are differentially regulated in plasma cell dyscrasias and CD44v9 represents a new independent prognostic parameter in multiple myeloma. Leuk Res 2001; 25: 1051–1057.

    Article  CAS  PubMed  Google Scholar 

  27. Stauder R, Van Driel M, Schwarzler C, Thaler J, Lokhorst HM, Kreuser ED et al. Different CD44 splicing patterns define prognostic subgroups in multiple myeloma. Blood 1996; 88: 3101–3108.

    CAS  PubMed  Google Scholar 

  28. Asosingh K, Gunthert U, Bakkus MH, De Raeve H, Goes E, Van Riet I et al. In vivo induction of insulin-like growth factor-I receptor and CD44v6 confers homing and adhesion to murine multiple myeloma cells. Cancer Res 2000; 60: 3096–3104.

    CAS  PubMed  Google Scholar 

  29. Asosingh K, Gunthert U, De Raeve H, Van Riet I, Van Camp B, Vanderkerken K . A unique pathway in the homing of murine multiple myeloma cells: CD44v10 mediates binding to bone marrow endothelium. Cancer Res 2001; 61: 2862–2865.

    CAS  PubMed  Google Scholar 

  30. Aruffo A, Stamenkovic I, Melnick M, Underhill CB, Seed B . CD44 is the principal cell surface receptor for hyaluronate. Cell 1990; 61: 1303–1313.

    Article  CAS  PubMed  Google Scholar 

  31. Dahl IM, Turesson I, Holmberg E, Lilja K . Serum hyaluronan in patients with multiple myeloma: correlation with survival and Ig concentration. Blood 1999; 93: 4144–4148.

    CAS  PubMed  Google Scholar 

  32. Calabro A, Oken MM, Hascall VC, Masellis AM . Characterization of hyaluronan synthase expression and hyaluronan synthesis in bone marrow mesenchymal progenitor cells: predominant expression of HAS1 mRNA and up-regulated hyaluronan synthesis in bone marrow cells derived from multiple myeloma patients. PG-2578-85. Blood 2002; 100: 2578–2585.

    Article  CAS  PubMed  Google Scholar 

  33. Arai T, Parker A, Busby Jr W, Clemmons DR . Heparin, heparan sulfate, and dermatan sulfate regulate formation of the insulin-like growth factor-I and insulin-like growth factor-binding protein complexes. J Biol Chem 1994; 269: 20388–20393.

    CAS  PubMed  Google Scholar 

  34. Steinfeld R, Van Den Berghe H, David G . Stimulation of fibroblast growth factor receptor-1 occupancy and signaling by cell surface-associated syndecans and glypican. J Cell Biol 1996; 133: 405–416.

    Article  CAS  PubMed  Google Scholar 

  35. Derksen PW, Keehnen RM, Evers LM, van Oers MH, Spaargaren M, Pals ST . Cell surface proteoglycan syndecan-1 mediates hepatocyte growth factor binding and promotes Met signaling in multiple myeloma. Blood 2002; 99: 1405–1410.

    Article  CAS  PubMed  Google Scholar 

  36. De Vos J, Couderc G, Tarte K, Jourdan M, Requirand G, Delteil MC et al. Identifying intercellular signaling genes expressed in malignant plasma cells by using complementary DNA arrays. Blood 2001; 98: 771–780.

    Article  CAS  PubMed  Google Scholar 

  37. Kleeff J, Ishiwata T, Kumbasar A, Friess H, Buchler MW, Lander AD et al. The cell-surface heparan sulfate proteoglycan glypican-1 regulates growth factor action in pancreatic carcinoma cells and is overexpressed in human pancreatic cancer. J Clin Invest 1998; 102: 1662–1673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Turnbull J, Powell A, Guimond S . Heparan sulfate: decoding a dynamic multifunctional cell regulator. Trends Cell Biol 2001; 11: 75–82.

    Article  CAS  PubMed  Google Scholar 

  39. Vincent T, Molina L, Espert L, Mechti N . Hyaluronan, a major non-protein glycosaminoglycan component of the extracellular matrix in human bone marrow, mediates dexamethasone resistance in multiple myeloma. Br J Haematol 2003; 121: 259–269.

    Article  CAS  PubMed  Google Scholar 

  40. Zhang XG, Gaillard JP, Robillard N, Lu ZY, Gu ZJ, Jourdan M et al. Reproducible obtaining of human myeloma cell lines as a model for tumor stem cell study in human multiple myeloma. Blood 1994; 83: 3654–3663.

    CAS  PubMed  Google Scholar 

  41. Vermes I, Haanen C, Steffens-Nakken H, Reutelingsperger C . A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J Immunol Methods 1995; 184: 39–51.

    Article  CAS  PubMed  Google Scholar 

  42. Liu D, Sy MS . A cysteine residue located in the transmembrane domain of CD44 is important in binding of CD44 to hyaluronic acid. J Exp Med 1996; 183: 1987–1994.

    Article  CAS  PubMed  Google Scholar 

  43. Mechti N, Piechaczyk M, Blanchard JM, Marty L, Bonnieu A, Jeanteur P et al. Transcriptional and post-transcriptional regulation of c-myc expression during the differentiation of murine erythroleukemia Friend cells. Nucleic Acids Res 1986; 14: 9653–9666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fichter M, Hinrichs R, Eissner G, Scheffer B, Classen S, Ueffing M . Expression of CD44 isoforms in neuroblastoma cells is regulated by PI 3-kinase and protein kinase C. Oncogene 1997; 14: 2817–2824.

    Article  CAS  PubMed  Google Scholar 

  45. Jourdan M, Ferlin M, Legouffe E, Horvathova M, Liautard J, Rossi JF et al. The myeloma cell antigen syndecan-1 is lost by apoptotic myeloma cells. Br J Haematol 1998; 100: 637–646.

    Article  CAS  PubMed  Google Scholar 

  46. Homburg CH, de Haas M, von dem Borne AE, Verhoeven AJ, Reutelingsperger CP, Roos D . Human neutrophils lose their surface Fc gamma RIII and acquire Annexin V binding sites during apoptosis in vitro. Blood 1995; 85: 532–540.

    CAS  PubMed  Google Scholar 

  47. Greenstein S, Barnard J, Zhou K, Fong M, Hendey B . Fas activation reduces neutrophil adhesion to endothelial cells. J Leukoc Biol 2000; 68: 715–722.

    CAS  PubMed  Google Scholar 

  48. Ferlin-Bezombes M, Jourdan M, Liautard J, Brochier J, Rossi JF, Klein B . IFN-alpha is a survival factor for human myeloma cells and reduces dexamethasone-induced apoptosis. J Immunol 1998; 161: 2692–2699.

    CAS  PubMed  Google Scholar 

  49. Borset M, Hjertner O, Yaccoby S, Epstein J, Sanderson RD . Syndecan-1 is targeted to the uropods of polarized myeloma cells where it promotes adhesion and sequesters heparin-binding proteins. Blood 2000; 96: 2528–2536.

    CAS  PubMed  Google Scholar 

  50. Levesque MC, Haynes BF . Cytokine induction of the ability of human monocyte CD44 to bind hyaluronan is mediated primarily by TNF-alpha and is inhibited by IL-4 and IL-13. J Immunol 1997; 159: 6184–6194.

    CAS  PubMed  Google Scholar 

  51. Lesley J, Hyman R, Kincade PW . CD44 and its interaction with extracellular matrix. Adv Immunol 1993; 54: 271–335.

    Article  CAS  PubMed  Google Scholar 

  52. Maiti A, Maki G, Johnson P . TNF-alpha induction of CD44-mediated leukocyte adhesion by sulfation. Science 1998; 282: 941–943.

    Article  CAS  PubMed  Google Scholar 

  53. Levesque MC, Haynes BF . TNFalpha and IL-4 regulation of hyaluronan binding to monocyte CD44 involves posttranslational modification of CD44. Cell Immunol 1999; 193: 209–218.

    Article  CAS  PubMed  Google Scholar 

  54. Manz RA, Radbruch A . Plasma cells for a lifetime? Eur J Immunol 2002; 32: 923–927.

    Article  CAS  PubMed  Google Scholar 

  55. Ramsden L, Rider CC . Selective and differential binding of interleukin (IL)-1 alpha, IL-1 beta, IL-2 and IL-6 to glycosaminoglycans. Eur J Immunol 1992; 22: 3027–3031.

    Article  CAS  PubMed  Google Scholar 

  56. Han ZC, Bellucci S, Shen ZX, Maffrand JP, Pascal M, Petitou M et al. Glycosaminoglycans enhance megakaryocytopoiesis by modifying the activities of hematopoietic growth regulators. J Cell Physiol 1996; 168: 97–104.

    Article  CAS  PubMed  Google Scholar 

  57. Gupta P, McCarthy JB, Verfaillie CM . Stromal fibroblast heparan sulfate is required for cytokine-mediated ex vivo maintenance of human long-term culture-initiating cells. Blood 1996; 87: 3229–3236.

    CAS  PubMed  Google Scholar 

  58. van der Voort R, Taher TE, Wielenga VJ, Spaargaren M, Prevo R, Smit L et al. Heparan sulfate-modified CD44 promotes hepatocyte growth factor/scatter factor-induced signal transduction through the receptor tyrosine kinase c-Met. J Biol Chem 1999; 274: 6499–6506.

    Article  CAS  PubMed  Google Scholar 

  59. van der Voort R, Keehnen RM, Beuling EA, Spaargaren M, Pals ST . Regulation of cytokine signaling by B cell antigen receptor and CD40-controlled expression of heparan sulfate proteoglycans. J Exp Med 2000; 192: 1115–1124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Barbour AP, Reeder JA, Walsh MD, Fawcett J, Antalis TM, Gotley DC . Expression of the CD44v2-10 isoform confers a metastatic phenotype: importance of the heparan sulfate attachment site CD44v3. Cancer Res 2003; 63: 887–892.

    CAS  PubMed  Google Scholar 

  61. Orian-Rousseau V, Chen L, Sleeman JP, Herrlich P, Ponta H . CD44 is required for two consecutive steps in HGF/c-Met signaling. Genes Dev 2002; 16: 3074–3086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Genty V, Dine G, Dufer J . Phenotypical alterations induced by glucocorticoids resistance in RPMI 8226 human myeloma cells. Leuk Res 2004; 28: 307–313.

    Article  CAS  PubMed  Google Scholar 

  63. Yu Q, Stamenkovic I . Localization of matrix metalloproteinase 9 to the cell surface provides a mechanism for CD44-mediated tumor invasion. Genes Dev 1999; 13: 35–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yu Q, Stamenkovic I . Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. Genes Dev 2000; 14: 163–176.

    PubMed  PubMed Central  Google Scholar 

  65. Hebbard L, Steffen A, Zawadzki V, Fieber C, Howells N, Moll J et al. CD44 expression and regulation during mammary gland development and function. J Cell Sci 2000; 113: 2619–2630.

    CAS  PubMed  Google Scholar 

  66. Heufelder AE, Bahn RS, Boergen KP, Scriba PC . Detection, localization and modulation of hyaluronic acid/CD44 receptor expression in patients with endocrine orbitopathy. Med Klin (Munich) 1993; 88: 181–184, 277.

    CAS  Google Scholar 

  67. Georgii-Hemming P, Wiklund HJ, Ljunggren O, Nilsson K . Insulin-like growth factor I is a growth and survival factor in human multiple myeloma cell lines. Blood 1996; 88: 2250–2258.

    CAS  PubMed  Google Scholar 

  68. Gadhoum Z, Leibovitch MP, Qi J, Dumenil D, Durand L, Leibovitch S et al. CD44: a new means to inhibit acute myeloid leukemia cell proliferation via p27Kip1. Blood 2004; 103: 1059–1068.

    Article  CAS  PubMed  Google Scholar 

  69. Reber S, Matzku S, Gunthert U, Ponta H, Herrlich P, Zoller M . Retardation of metastatic tumor growth after immunization with metastasis-specific monoclonal antibodies. Int J Cancer 1990; 46: 919–927.

    Article  CAS  PubMed  Google Scholar 

  70. Seiter S, Arch R, Reber S, Komitowski D, Hofmann M, Ponta H et al. Prevention of tumor metastasis formation by anti-variant CD44. J Exp Med 1993; 177: 443–455.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Association pour la Recherche contre le Cancer, the Fédération des Centres de Lutte contre le Cancer Comités de l'Hérault et du Gard and the Fondation pour la Recherche Medicale.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N Mechti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vincent, T., Mechti, N. IL-6 regulates CD44 cell surface expression on human myeloma cells. Leukemia 18, 967–975 (2004). https://doi.org/10.1038/sj.leu.2403333

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403333

Keywords

This article is cited by

Search

Quick links