Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Preferential expression of the vasoactive intestinal peptide (VIP) receptor VPAC1 in human cord blood-derived CD34+CD38 cells: possible role of VIP as a growth-promoting factor for hematopoietic stem/progenitor cells

Abstract

Primitive hematopoietic progenitor cells such as severe combined immunodeficiency- repopulating cells and long-term culture-initiating cells are enriched in CD34+CD38 cells derived from various stem cell sources. In this study, to elucidate the features of such primitive cells at the molecular level, we tried to isolate genes that were preferentially expressed in umbilical cord blood (CB)-derived CD34+CD38 cells by subtractive hybridization. The gene for VPAC1 receptor, a receptor for the neuropeptide vasoactive intestinal peptide (VIP), was thereby isolated and it was shown that this gene was expressed in both CD34+CD38 and CD34+CD38+ CB cells and that the expression levels were higher in CD34+CD38 CB cells. Next, we assessed the effects of VIP on the proliferation of CD34+ CB cells using in vitro culture systems. In serum-free single-cell suspension culture, VIP enhanced clonal growth of CD34+ CB cells in synergy with FLT3 ligand (FL), stem cell factor (SCF), and thrombopoietin (TPO). In serum-free clonogenic assays, VIP promoted myeloid (colony-forming unit-granulocyte/macrophage (CFU-GM)) and mixed (CFU-Mix) colony formations. Furthermore, in Dexter-type long-term cultures, VIP increased colony-forming cells at week 5 of culture. These results suggest that VIP functions as a growth-promoting factor of CB-derived hematopoetic progenitor cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Orlic D, Bodine DM . What defines a pluripotent hematopoietic stem cell (PHSC): will the real PHSC please stand up!. Blood 1994; 84: 3991–3994.

    CAS  PubMed  Google Scholar 

  2. Krause DS, Fackler MJ, Civin CI, May WS . CD34: structure, biology, and clinical utility. Blood 1996; 87: 1–13.

    CAS  PubMed  Google Scholar 

  3. Terstappen LW, Huang S, Safford M, Lansdorp PM, Loken MR . Sequential generations of hematopoietic colonies derived from single nonlineage-committed CD34+CD38 progenitor cells. Blood 1991; 77: 1218–1227.

    CAS  PubMed  Google Scholar 

  4. Huang S, Terstappen LW . Lymphoid and myeloid differentiation of single human CD34+, HLA-DR+, CD38 hematopoietic stem cells. Blood 1994; 83: 1515–1526.

    CAS  PubMed  Google Scholar 

  5. Herbein G, Sovalat H, Wunder E, Baerenzung M, Bachorz J, Lewandowski H et al. Isolation and identification of two CD34+ cell subpopulations from normal human peripheral blood. Stem Cells 1994; 12: 187–197.

    Article  CAS  PubMed  Google Scholar 

  6. Muench MO, Cupp J, Polakoff J, Roncarolo MG . Expression of CD33, CD38, and HLA-DR on CD34+ human fetal liver progenitors with a high proliferative potential. Blood 1994; 83: 3170–3181.

    CAS  PubMed  Google Scholar 

  7. Wang JCY, Doedens M, Dick JE . Primitive human hematopoietic cells are enriched in cord blood compared with adult bone marrow or mobilized peripheral blood as measured by the quantitative in vivo SCID-repopulating cell assay. Blood 1997; 89: 3919–3924.

    CAS  PubMed  Google Scholar 

  8. Issaad C, Croisille L, Katz A, Vainchenker W, Coulombel L . A murine stromal cell line allows the proliferation of very primitive human CD34++/CD38 progenitor cells in long-term cultures and semisolid assays. Blood 1993; 81: 2916–2924.

    CAS  PubMed  Google Scholar 

  9. Graf L, Torok-Storb B . Identification of a novel DNA sequence differentially expressed between normal human CD34+CD38hi and CD34+CD38lo marrow cells. Blood 1995; 86: 548–556.

    CAS  PubMed  Google Scholar 

  10. Zhang X, Dormady SP, Basch RS . Identification of four human cDNAs that are differentially expressed by early hematopoietic progenitors. Exp Hematol 2000; 28: 1286–1296.

    Article  CAS  PubMed  Google Scholar 

  11. Mayani H, Gutierrez-Rodriguez M, Espinoza L, Lo'pez-Chalini E, Huerta-Zepeda A, Flores E, Sa'nchez-Valle E, Luna-Bautista F, Valencia I, Ramjrez OT . Kinetics of hematopoiesis in Dexter-type long term cultures established from human umbilical cord blood cells. Stem Cells 1998; 16: 127–135.

    Article  CAS  PubMed  Google Scholar 

  12. Pettegell R, Luft T, Henschler R, Hows JM, Dexter TM, Ryder D, Testa NG . Direct comparison by limiting dilution analysis of long-term culture-initiating cells in human bone marrow, umbilical cord blood, and blood stem cells. Blood 1994; 84: 3653–3659.

    Google Scholar 

  13. Pozo D, Delgado M, Martinez M, Guerrero JM, Leceta J, Gomariz RP et al. Immunobiology of vasoactive intestinal peptide (VIP). Immunol Today 2000; 21: 7–11.

    Article  CAS  PubMed  Google Scholar 

  14. Gomariz RP, Martinez C, Abad C, Leceta J, Delgado M . Immunology of VIP: a review and therapeutical perspectives. Curr Pharm Des 2001; 7: 89–111.

    Article  CAS  PubMed  Google Scholar 

  15. Ganea D, Delgado M . Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) as modulators of both innate and adaptive immunity. Crit Rev Oral Biol Med 2002; 13: 229–237.

    Article  PubMed  Google Scholar 

  16. Delgado M, Pozo D, Martinez C, Leceta J, Calvo JR, Ganea D et al. Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide inhibit endotoxin-induced TNF-alpha production by macrophages: in vitro and in vivo studies. J Immunol 1999; 162: 2358–2367.

    CAS  PubMed  Google Scholar 

  17. Sun W, Tadmori I, Yang L, Delgado M, Ganea D . Vasoactive intestinal peptide (VIP) inhibits TGF-beta1 production in murine macrophages. J Neuroimmunol 2000; 107: 88–99.

    Article  CAS  PubMed  Google Scholar 

  18. Cai Y, Xin X, Shin GJ, Mokuno Y, Uehara H, Yamada T et al. Pituitary adenylate cyclase activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) stimulate interleukin-6 production through the third type of PACAP/VIP receptor in rat bone marrow-derived stromal cells. Endocrinology 1997; 138: 2515–2520.

    Article  CAS  PubMed  Google Scholar 

  19. Martinez C, Delgado M, Pozo D, Leceta J, Calvo JR, Ganea D et al. Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide modulate endotoxin-induced IL-6 production by murine peritoneal macrophages. J Leukoc Biol 1998; 63: 591–601.

    Article  CAS  PubMed  Google Scholar 

  20. Delgado M, Ganea D . Inhibition of endotoxin-induced macrophage chemokine production by vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide in vitro and in vivo. J Immunol 2001; 167: 966–975.

    Article  CAS  PubMed  Google Scholar 

  21. Rameshwar P, Gascon P, Oh HS, Denny TN, Zhu G, Ganea D . Vasoactive intestinal peptide (VIP) inhibits the proliferation of bone marrow progenitors through the VPAC1 receptor. Exp Hematol 2002; 30: 1001–1009.

    Article  CAS  PubMed  Google Scholar 

  22. Regidor C, Posada M, Monteagudo D, Garaulet C, Somolinos N, Fore's R et al. Umbilical cord blood banking for unrelated transplantation: evaluation of cell separation and storage methods. Exp Hematol 1999; 27: 380–385.

    Article  CAS  PubMed  Google Scholar 

  23. Blazsek I, Marsalet BD, Legras S, Marion S, Machover D, Misset JL . Large scale recovery and characterization of stromal cell-associated primitive haematopoietic progenitor cells from filter-retained human bone marrow. Bone Marrow Transpl 1999; 23: 647–657.

    Article  CAS  Google Scholar 

  24. Brady G, Iscove NN . Construction of cDNA libraries from single cells. Methods Enzymol 1993; 225: 611–623.

    Article  CAS  PubMed  Google Scholar 

  25. Brady G, Billia F, Knox J, Hoang T, Kirsch IR, Voura EB et al. Analysis of gene expression in a complex differentiation hierarchy by global amplification of cDNA from single cells. Curr Biol 1995; 5: 909–922.

    Article  CAS  PubMed  Google Scholar 

  26. Boehmelt G, Antonio L, Iscove NN . Cloning of the murine transcriptional corepressor component SAP18 and differential expression of its mRNA in the hematopoietic hierarchy. Gene 1998; 207: 267–275.

    Article  CAS  PubMed  Google Scholar 

  27. Oka H, Jin L, Kuling E, Scheithauer BW, Lloyd RV . Pituitary adenylate cyclase-activating polypeptide inhibits transforming growth factor-β1-induced apoptosis in a human pituitary adenoma cell line. Am J Pathol 1999; 155: 1893–1900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kimura T, Sakabe H, Tanimukai S, Abe T, Urata T, Yasukawa K et al. Simultaneous activation of signals through gp130, c-kit, and interleukin-3 receptor promotes a trilineage blood cell production in the absence of terminally acting lineage-specific factors. Blood 1997; 90: 4767–4778.

    CAS  PubMed  Google Scholar 

  29. Eaves CJ, Cashman JD, Eaves A . Methodology of long-term culture of human hematopoietic cells. J Tissue Cult Meth 1991; 13: 55–62.

    Article  Google Scholar 

  30. Andrews RG, Singer JW, Bernstein ID . Precursors of colony-forming cells in humans can be distinguished from colony-forming cells by expression of the CD33 and CD34 antigens and light scatter properties. J Exp Med 1989; 169: 1721–1731.

    Article  CAS  PubMed  Google Scholar 

  31. Jin CH, Takada H, Nomura A, Takahata Y, Nakayama H, Kajiwara M et al. Immunophenotypic and functional characterization of CD33(+)CD34(+) cells in human cord blood of preterm neonates. Exp Hematol 2000; 28: 1174–1180.

    Article  CAS  PubMed  Google Scholar 

  32. Tanavde VM, Malehorn MT, Lumkul R, Gao Z, Wingard J, Garrett ES et al. Human stem-progenitor cells from neonatal cord blood have greater hematopoietic expansion capacity than those from mobilized adult blood. Exp Hematol 2002; 30: 816–823.

    Article  CAS  PubMed  Google Scholar 

  33. Broome CS, JA Miyan . Neuropeptide control of bone marrow neutrophil production: a key axis for neuroimmunomodulation. Ann NY Acad Sci 2001; 917: 424–434.

    Article  Google Scholar 

  34. Koike K, Nakahata T, Takagi M, Kobayashi T, Ishiguro A, Tsuji K, Naganuma K, Okano A, Akiyama Y, Akabane T . Synergism of BSF-2/interleukin 6 and interleukin 3 on development of multipotential hemopoietic progenitors in serum-free culture. J Exp Med 1988; 168: 879–890.

    Article  CAS  PubMed  Google Scholar 

  35. Sui X, Tsuji K, Tanaka R, Tajima S, Muraoka K, Yasukawa K et al. gp130 and c-Kit signalings synergize for ex vivo expansion of human primitive hemopoietic progenitor cells. Proc Natl Acad Sci USA 1995; 92: 2859–2863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Balducci E, Azzarello G, Valenti MT, Capuzzo GM, Pappagallo GL, Pilotti I et al. The impact of progenitor enrichment, serum, and cytokines on the ex vivo expansion of mobilized peripheral blood stem cells: a controlled trial. Stem Cells 2003; 21: 33–40.

    Article  CAS  PubMed  Google Scholar 

  37. Onuoha G, Alpar K, Jones I . Vasoactive intestinal peptide and nitric oxide in the acute phase following burns and trauma. Burns 2001; 27: 17–21.

    Article  CAS  PubMed  Google Scholar 

  38. O'Dorisio MS, Hauger M, O'Dorisio TM . Age-dependent levels of plasma neuropeptides in normal children. Regul Pept 2002; 109: 189–192.

    Article  CAS  PubMed  Google Scholar 

  39. Weihe E, Nohr D, Michel S, Muller S, Zentel HJ, Fink T et al. Molecular anatomy of the neuro-immune connection. Int J Neurosci 1991; 59: 1–23.

    Article  CAS  PubMed  Google Scholar 

  40. Yamazaki K, TD Allen . Ultrastructural morphometric study of efferent nerve terminals on murine bone marrow stromal cells, and the recognition of a novel anatomical unit: the neuro-reticular complex. Am J Anat 1990; 187: 261–276.

    Article  CAS  PubMed  Google Scholar 

  41. Afan AM, Broome CS, Nicholls SE, Whetton AD, Miyan JA . Bone marrow innervation regulates cellular retention in murine haematopoietic system. Br J Haematol 1997; 98: 569–577.

    Article  CAS  PubMed  Google Scholar 

  42. Miyan JA, Broome CS, Afan AM . Coordinated host defense through an integration of the neural, immune and haemopoietic systems. Domest Anim Endocrinol 1998; 15: 297–304.

    Article  CAS  PubMed  Google Scholar 

  43. Benestad HB, Strøm-Gundersen I, Iversen PO, Haug E, Njå A . No neuronal regulation of murine bone marrow function. Blood 1998; 91: 1280–1287.

    CAS  PubMed  Google Scholar 

  44. Miyan JA, Broome CS, Whetton AD . Neural regulation of bone marrow (letter; comment). Blood 1998; 92: 2971–2973.

    CAS  PubMed  Google Scholar 

  45. Rameshwar P, Zhu G, Donnelly RJ, Qian J, Ge H, Goldstein KR et al. The dynamics of bone marrow stromal cells in the proliferation of multipotent hematopoietic progenitors by substance P: an understanding of the effects of a neurotransmitter on the differentiating hematopoietic stem cell. J Neuroimmunol 2001; 121: 22–31.

    Article  CAS  PubMed  Google Scholar 

  46. Joshi DD, Dang A, Yadav P, Qian J, Bandari PS, Chen K et al. Negative feedback on the effects of stem cell factor on hematopoiesis is partly mediated through neutral endopeptidase activity on substance P: a combined functional and proteomic study. Blood 2001; 98: 2697–2706.

    Article  CAS  PubMed  Google Scholar 

  47. Oomen SP, van Hennik PB, Antonissen C, Lichtenauer-Kaligis EG, Hofland LJ, Lamberts SW et al. Somatostatin is a selective chemoattractant for primitive (CD34(+)) hematopoietic progenitor cells. Exp Hematol 2002; 30: 116–125.

    Article  CAS  PubMed  Google Scholar 

  48. Harzenetter MD, Keller U, Beer S, Riedl C, Peschel C, Holzmann B . Regulation and function of the CGRP receptor complex in human granulopoiesis. Exp Hematol 2002; 30: 306–312.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Kirin Brewery and Immunex Corporation for providing the various growth factors used in this study. We also thank Kumi Honma and Asuka Kishimoto for cryopreservation of cord blood and bone marrow samples and Machiko Mishima for skillful technical assistance. This work was supported by grants-in-aid for scientific research from the Ministry of Education, Culture, Sports, Science and Technology of Japan (No. 11670996).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Kawakami.

Appendix A

Appendix A

Primers and probes for real-time RT-PCR are shown in Table A.1.

Table a1 Primers and probes for real-time RT-PCR

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawakami, M., Kimura, T., Kishimoto, Y. et al. Preferential expression of the vasoactive intestinal peptide (VIP) receptor VPAC1 in human cord blood-derived CD34+CD38 cells: possible role of VIP as a growth-promoting factor for hematopoietic stem/progenitor cells. Leukemia 18, 912–921 (2004). https://doi.org/10.1038/sj.leu.2403330

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403330

Keywords

This article is cited by

Search

Quick links