Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Secondary cytogenetic aberrations in childhood Philadelphia chromosome positive acute lymphoblastic leukemia are nonrandom and may be associated with outcome

Abstract

Additional chromosomal aberrations occur frequently in Philadelphia chromosome positive (Ph+) acute lymphoblastic leukemia (ALL) of childhood. The treatment outcome of these patients is heterogeneous. This study assessed whether such clinical heterogeneity could be partially explained by the presence and characteristics of additional chromosomal abnormalities. Cytogenetic descriptions were available for 249 of 326 children with Ph+ ALL, diagnosed and treated by 10 different study groups/large single institutions from 1986 to 1996. Secondary aberrations were present in 61% of the cases. Chromosomes 9, 22, 7, 14, and 8 were most frequently abnormal. Most (93%) karyotypes were unbalanced. Three main cytogenetic subgroups were identified: no secondary aberrations, gain of a second Ph and/or >50 chromosomes, or loss of chromosome 7, 7p, and/or 9p, while other secondary aberrations were grouped as combinations of gain and loss or others. Of the three main cytogenetic subgroups, the loss group had the worst event-free survival (P=0.124) and disease-free survival (P=0.013). However, statistical significance was not maintained when adjusted for other prognostic factors and treatment. Karyotypic analysis is valuable in subsets of patients identified by molecular screening, to assess the role of additional chromosomal abnormalities and their correlation with clinical heterogeneity, with possible therapeutic implications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Conter V, Arico M, Valsecchi MG, Basso G, Biondi A, Madon E et al. Long-term results of the Italian Association of Pediatric Hematology and Oncology (AIEOP) acute lymphoblastic leukemia studies. Leukemia 2000; 14: 2196–2204.

    Article  CAS  PubMed  Google Scholar 

  2. Eden OB, Harrison G, Richards S, Lilleyman JS, Bailey CC, Chessells JM et al. Long-term follow-up of the United Kingdom Medical Research Council protocols for childhood acute lymphoblastic leukaemia. Leukemia 2000; 14: 2307–2320.

    Article  CAS  PubMed  Google Scholar 

  3. Gaynon PS, Trigg ME, Heerema NA, Sensel MG, Sather HN, Hammond GD et al. Children's Cancer Group trials in childhood acute lymphoblastic leukemia: 1983–1995. Leukemia 2000; 14: 2223–2233.

    Article  CAS  PubMed  Google Scholar 

  4. Gustafsson G, Schmiegelow K, Forestier E, Clausen N, Glomstein A, Jonmundsson G et al. Improving outcome through two decades in childhood ALL in the Nordic countries: the impact of high-dose methotrexate in the reduction of CNS irradiation. Leukemia 2000; 14: 2267–2275.

    Article  CAS  PubMed  Google Scholar 

  5. Harms DO, Janka-Schaub GE . Co-operative study group for childhood acute lymphoblastic leukemia (COALL): long-term follow-up of trials 82, 85, 89 and 92. Leukemia 2000; 14: 2234–2239.

    Article  CAS  PubMed  Google Scholar 

  6. Kamps WA, Veerman AJ, van Wering ER, van Weerden JF, Slater R, van der Does-van den Berg A . Long-term follow-up of Dutch Childhood Leukemia Study Group (DCLSG) protocols for children with acute lymphoblastic leukemia. Leukemia 2000; 14: 2240–2246.

    Article  CAS  PubMed  Google Scholar 

  7. Maloney KW, Shuster JJ, Murphy S, Pullen J, Camitta BA . Long-term results of treatment studies for childhood acute lymphoblastic leukemia: Pediatric Oncology Group studies from 1983–1994. Leukemia 2000; 14: 2276–2285.

    Article  CAS  PubMed  Google Scholar 

  8. Pui C-H, Boyett JM, Rivera GK, Hancock ML, Sandlund JT, Ribeiro RC et al. Long-term results of Total Therapy studies 11, 12 and 13A for childhood acute lymphoblastic leukemia at St Jude Children's Research Hospital. Leukemia 2000; 14: 2286–2294.

    Article  CAS  PubMed  Google Scholar 

  9. Schrappe M, Reiter A, Zimmermann M, Harbott J, Ludwig WD, Henze G et al. Long-term results of four consecutive trials in childhood ALL performed by the ALL-BFM study group from 1981 to 1995. Berlin–Frankfurt–Munster. Leukemia 2000; 14: 2205–2222.

    Article  CAS  PubMed  Google Scholar 

  10. Silverman LB, Declerck L, Gelber RD, Dalton VK, Asselin BL, Barr RD et al. Results of DANA-Farber Cancer Institute Consortium protocols for children with newly diagnosed acute lymphoblastic leukemia (1981–1995). Leukemia 2000; 14: 2247–2256.

    Article  CAS  PubMed  Google Scholar 

  11. Tsuchida M, Ikuta K, Hanada R, Saito T, Isoyama K, Sugita K et al. Long-term follow-up of childhood acute lymphoblastic leukemia in Tokyo Children's Cancer Study Group 1981–1995. Leukemia 2000; 14: 2295–2306.

    Article  CAS  PubMed  Google Scholar 

  12. Vilmer E, Suciu S, Ferster A, Bertrand Y, Cave H, Thyss A et al. Long-term results of three randomized trials (58831, 58832, 58881) in childhood acute lymphoblastic leukemia: a CLCG-EORTC report. Leukemia 2000; 14: 2257–2266.

    Article  CAS  PubMed  Google Scholar 

  13. Pui C-H, Frankel SL, Carroll AJ, Ramondi SC, Shuster JJ, Head DR et al. Clinical characteristics and treatment outcome of childhood acute lymphoblastic leukemia with the t(4;11)(q21;q23): a collaborative study of 40 cases. Blood 1991; 77: 440–447.

    CAS  PubMed  Google Scholar 

  14. Heerema NA, Sather HN, Ge J, Arthur DC, Hilden JM, Trigg ME et al. Cytogenetic studies of infant acute lymphoblastic leukemia: poor prognosis of infants with t(4;11). A report of the Children's Cancer Group. Leukemia 1999; 13: 679–686.

    Article  CAS  PubMed  Google Scholar 

  15. Uckun FM, Sensel MG, Sather HN, Gaynon PS, Arthur D, Lange B et al. Clinical significance of translocation t(1;19) in childhood acute lymphoblastic leukemia in the context of contemporary therapies: a report from the Children's Cancer Group. J Clin Oncol 1998; 16: 527–535.

    Article  CAS  PubMed  Google Scholar 

  16. Hunger SP . Chromosomal translocations involving the E2A gene in acute lymphoblastic leukemia: clinical features and molecular pathogenesis. Blood 1996; 87: 1211–1224.

    CAS  PubMed  Google Scholar 

  17. Third International Workshop on Chromosomes in Leukemia, 1980 (1981): Clinical significance of chromosomal abnormalities in acute lymphoblasic leukemia. Cancer Genet Cytogenet 1981; 4: 111–137.

  18. Harbott J, Viehmann S, Borkhardt A, Henze G, Lampert F . Incidence of TEL/AML1 fusion gene analyzed consecutively in children with acute lymphoblastic leukemia in relapse. Blood 1997; 90: 4933–4937.

    CAS  PubMed  Google Scholar 

  19. Shurtleff SA, Buijs A, Behm FG, Raimondi SC, Hancock ML, Chan GC-F et al. TEL/AML1 fusion resulting from a cryptic t(12;21) is the most common genetic lesion in pediatric ALL and defines a subgroup of patients with an excellent prognosis. Leukemia 1995; 9: 1985–1989.

    CAS  PubMed  Google Scholar 

  20. Heerema NA, Nachman JB, Sather HN, Sensel MG, Lee MK, Hutchinson R et al. Hypodiploidy with less than 45 chromosomes confers adverse risk in childhood acute lymphoblastic leukemia: a report from the Children's Cancer Group. Blood 1999; 94: 4036–4046.

    CAS  PubMed  Google Scholar 

  21. Uckun FM, Nachman JB, Sather HN, Sensel MG, Kraft P, Steinherz PG et al. Poor treatment outcome of Philadelphia chromosome-positive pediatric acute lymphoblastic leukemia despite intensive chemotherapy. Leuk Lymph 1999; 345: 998–1006.

    Google Scholar 

  22. Schlieben S, Borkhardt A, Reinisch I, Ritterbach J, Janssen JW, Ratei R et al. Incidence and clinical outcome of children with BCR/ABL-positive acute lymphoblastic leukemia (ALL). A prospective RT-PCR study based on 673 patients entrolled in the German pediatric multicenter therapy trials ALL-BFM-90 and CoALL-05-92. Leukemia 1996; 10: 957–963.

    CAS  PubMed  Google Scholar 

  23. Christ W, Carroll A, Shuster J, Jackson J, Head D, Borowitz M et al. Philadelphia chromosome positive childhood acute lymphoblastic leukemia: clinical and cytogenetic characteristics and treatment outcome. A Pediatric Oncology Group study. Blood 1990; 76: 489–494.

    Google Scholar 

  24. Secker-Walker LM, Craig JM, Hawkins JM, Hoffbrand AV . Philadelphia positive acute lymphoblastic leukemia in adults: age distribution, BCR breakpoint and prognostic significance. Leukemia 1991; 5: 196–199.

    CAS  PubMed  Google Scholar 

  25. Thomas X, Danaila C, Le QH, Sebban C, Troncy J, Charrin C et al. Long-term follow-up of patients with newly diagnosed adult acute lymphoblastic leukemia: a single institution experience of 378 consecutive patients over a 21-year period. Leukemia 2001; 15: 1811–1822.

    Article  CAS  PubMed  Google Scholar 

  26. Maurer J, Janssen JW, Theil E, van Denderen J, Ludwig WD, Aydemir U et al. Detection of chimeric BCR-ABL genes in acute lymphoblastic leukaemia by the polymerase chain reaction. Lancet 1991; 337: 1055–1058.

    Article  CAS  PubMed  Google Scholar 

  27. Westbrook CA, Hooberman AL, Spino C, Dodge RK, Larson RA, Davey F et al. Clinical significance of the BCR-ABL fusion gene in adult lymphoblastic leukemia: a Cancer and Leukemia Group B Study (8762). Blood 1992; 80: 1983–1990.

    Google Scholar 

  28. Chissoe SL, Bodenteich A, Wang YW, Wang YP, Burian D, Clifton SW et al. Sequence and analysis of the human ABL gene, the BCR gene, and regions involved in the Philadelphia chromosomal translocation. Genomics 1995; 27: 67–82.

    Article  CAS  PubMed  Google Scholar 

  29. Pane F, Figeri F, Sindona M, Luciano L, Ferrara F, Cimino R et al. Neutrophilic-chronic myeloid leukemia: a distinct disease with a specific molecular marker (BCR/ABL with C3/A2 junction). Blood 1996; 88: 2410–2414.

    CAS  PubMed  Google Scholar 

  30. Arico M, Valsecchi MG, Camitta B, Scrappe M, Chessells J, Baruchel A et al. Outcome of treatment in children with Philadelphia chromosome-positive acute lymphoblastic leukemia. N Engl J Med 2000; 342: 998–1006.

    Article  CAS  PubMed  Google Scholar 

  31. Smith M, Arthur D, Camitta B, Carroll AJ, Crist W, Gaynon P et al. Uniform approach to risk classification and treatment assignment for children with acute lymphoblastic leukemia. J Clin Oncol 1996; 14: 18–24.

    Article  CAS  PubMed  Google Scholar 

  32. Mastrangelo R, Poplack D, Bleyer A, Riccardi R, Sather H, D'Angio G . Report and recommendations of the Rome workshop concerning poor-prognosis acute lymphoblastic leukemia in children: biologic bases for staging, stratification, and treatment. Med Pediatr Oncol 1986; 14: 191–194.

    Article  CAS  PubMed  Google Scholar 

  33. Rieder H, Ludwig WD, Gassmann W, Maurer J, Janssen JW, Gokbuget N et al. Prognostic significance of additional chromosome abnormalities in adult patients with Philadelphia chromosome positive acute lymphoblastic leukaemia. Br J Haematol 1996; 95: 678–691.

    Article  CAS  PubMed  Google Scholar 

  34. Mitelman F (ed). ISCN (1995): An International System for Human Cytogenetic Nomenclature. Karger S. Basel.

    Google Scholar 

  35. Russo C, Carroll A, Kohler S, Borowitz M, Amylon M, Homans A et al. Philadelphia chromosome and monosomy 7 in childhood acute lymphoblastic leukemia: a Pediatric Oncology Group study. Blood 1991; 77: 1050–1056.

    CAS  PubMed  Google Scholar 

  36. Kaplan EL, Meier P . Nonparametric estimation from incomplete observations. J Am Stat Assoc 1958; 53: 457–481.

    Article  Google Scholar 

  37. Peto R, Pike MC, Armitage P, Breslow NE, Cox DR, Howard SV et al. Design and analysis of randomized clinical trials requiring prolonged observation of each patient II. Analysis and examples. Br J Cancer 1977; 35: 1–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mantel N . Evaluation of survival data and two new rank order statistics arising in its consideration. Cancer Chemother Rep 1966; 50: 163–170.

    CAS  PubMed  Google Scholar 

  39. Mitelman Database of Chromosome Aberrations in Cancer (2003), Mitelman F, Johansson B and Mertens F (Eds.), http://cgap.nci.nih.gov/Chromosomes/Mitelman.

  40. Heerema N, Sather H, Sensel M, Liu-Mares W, Lange B, Bostrom B et al. Association of chromosome arm 9p abnormalities with adverse risk in childhood acute lymphoblastic leukemia: a report from the Children's Cancer Group. Blood 1999; 94: 1537–1544.

    CAS  PubMed  Google Scholar 

  41. Murphy SB, Raimondi SC, Rivera GK, Crone M, Dodge RK, Behm FG et al. Nonrandom abnormalities of chromosome 9p in childhood acute lymphoblastic leukemia: association with high-risk clinical features. Blood 1989; 74: 409–415.

    CAS  PubMed  Google Scholar 

  42. Zhou M, Gu L, Yeager AM, Findley HW . Incidence and clinical significance of CDKN2/MTS1/P16ink4A and MTS2/P15ink4B gene deletions in childhood acute lymphoblastic leukemia. Pediatr Hematol Oncol 1997; 14: 141–150.

    Article  CAS  PubMed  Google Scholar 

  43. Diccianni MB, Batova A, Yu J, Vu T, Pullen J, Amylon M et al. Shortened survival after relapse in T-cell acute lymphoblastic leukemia patients with p16/p15 deletions. Leuk Res 1997; 21: 549–558.

    Article  CAS  PubMed  Google Scholar 

  44. Kees UR, Burton PT, Lu C, Baker DL . Homozygous deletion of the p16/MTS1 gene in pediatric acute lymphoblastic leukemia is associated with unfavorable clinical outcomes. Blood 1997; 89: 4161–4166.

    CAS  PubMed  Google Scholar 

  45. Trueworthy R, Shuster J, Look T, Crist W, Borowitz M, Carroll A et al. Ploidy of lymphoblasts is the strongest predictor of treatment outcome in B-progenitor cell acute lymphoblastic leukemia of childhood: a Pediatric Oncology Group study. J Clin Oncol 1992; 10: 606–613.

    Article  CAS  PubMed  Google Scholar 

  46. Bloomfield CD, Secker-Walker LM, Goldman AI, Van Den Berghe H, de la Chapelle A, Ruutu T et al. Six-year follow-up of the clinical significance of karyotype in acute lymphoblastic leukemia. Cancer Genet Cytogenet 1989; 40: 171–185.

    Article  CAS  PubMed  Google Scholar 

  47. Heerema NA, Sather HN, Sensel MG, Zhang T, Hutchinson RJ, Nachman JB et al. Prognostic impact of trisomies of chromosomes 10, 17, and 5 among children with acute lymphoblastic leukemia and high hyperdiploidy (>50 chromosomes). J Clin Oncol 2000; 18: 1876–1887.

    Article  CAS  PubMed  Google Scholar 

  48. Harris M, Shuster J, Carroll A, Look A, Borowitz M, Crist W et al. Trisomy of leukemic cell chromosomes 4 and 10 identifies children with B-progenitor cell acute lymphoblastic leukemia with a very low risk of treatment failure: a Pediatric Oncology Group study. Blood 1992; 79: 3316–3324.

    CAS  PubMed  Google Scholar 

  49. Nanjangud G, Kadam PR, Saikia T, Bhisey A, Kumar A, Gopal R et al. Karyotypic findings as an independent prognostic marker in chronic myeloid leukemia blast crisis. Leuk Res 1994; 18: 385–392.

    Article  CAS  PubMed  Google Scholar 

  50. Moorman AV, Richards SM, Martineau M, Cheung KL, Robinson HM, Jalali GR et al, for the United Kingdom Medical Research Council's Childhood Leukaemia Working Party. Outcome heterogeneity in childhood high-hyperdiploid acute lymphoblastic leukemia. Blood 2003; 102: 2756–2762.

    Article  CAS  PubMed  Google Scholar 

  51. Huntly BJP, Bench A, Green AR . Double jeopardy from a single translocation: deletions of the derivative chromosome 9 in chronic myeloid leukemia. Blood 2003; 102: 1160–1168.

    Article  CAS  PubMed  Google Scholar 

  52. Johansson B, Mertens F, Mitelman F . Primary vs secondary neoplasia-associated chromosomal abnormalities – balanced rearrangements vs genomic imbalances? Genes Chromosomes Cancer 1996; 16: 155–163.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the many cytogeneticists who contributed cases for this study, as well as the clinicians who participated in the studies. A special thanks to the children and their parents, who made this study possible.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to N A Heerema.

Additional information

Supported in part by CA-21765 from the National Cancer Institute, the Associazione Italiana Ricerca Cancre, a Center of Excellence Grant for the State of Tennessee and the American Lebanese Syrian Associated Charities (ALSAC). C-H Pui is the American Cancer Society-FM Kirby Clinical Research Professor

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heerema, N., Harbott, J., Galimberti, S. et al. Secondary cytogenetic aberrations in childhood Philadelphia chromosome positive acute lymphoblastic leukemia are nonrandom and may be associated with outcome. Leukemia 18, 693–702 (2004). https://doi.org/10.1038/sj.leu.2403324

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403324

Keywords

This article is cited by

Search

Quick links