Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

The raft marker GM1 identifies functional subsets of granular lymphocytes in patients with CD3+ lymphoproliferative disease of granular lymphocytes

Abstract

The raft marker GM1 is expressed at very low levels at the plasma membrane of resting T cells (GM1dull). In vitro T-cell activation induces synthesis of this lipid, which is then expressed at very high levels (GM1bright) at the membrane of activated/effector cells. By flow cytometry and confocal microscopy, we analyzed the expression and organization of GM1 in a series of 15 patients with CD3+ lymphoproliferative disease of granular lymphocytes (LDGL). We found that GM1bright GL were detectable in fresh blood samples obtained in all LDGL patients, although the range of brightly stained cells was extremely variable. This distinctive in vivo pattern has never been shown in T lymphocytes from healthy individuals or in patients with different chronic T or B lymphoproliferative disorders or active infectious diseases. The low number of cycling cells detected in LDGL patients was always included within the GM1bright GL population. Interestingly, GM1bright GL were demonstrated to contain a higher amount of IFN-γ as compared to GM1dull GL. These findings allow to distinguish subsets of GL at different levels of activation within the monoclonal CD3+ population. The GM1bright GL subset is likely to be responsible for the renewing of GL and thus for maintaining chronic proliferation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Loughran Jr TP . Clonal diseases of large granular lymphocytes. Blood 1993; 82: 1–14.

    PubMed  Google Scholar 

  2. Semenzato G, Pandolfi F, Chisesi T, De Rossi G, Pizzolo G, Zambello R et al. The lymphoproliferative disease of granular lymphocytes. A heterogeneous disorder ranging from indolent to aggressive conditions. Cancer 1987; 60: 2971–2978.

    Article  CAS  PubMed  Google Scholar 

  3. Zambello R, Semenzato G . Large granular lymphocytosis. Haematologica 1998; 83: 936–942.

    CAS  PubMed  Google Scholar 

  4. Lamy T, Loughran Jr TP . Current concepts: large granular lymphocyte leukemia. Blood Rev 1999; 13: 230–240.

    Article  CAS  PubMed  Google Scholar 

  5. Zambello R, Facco M, Trentin L, Sancetta R, Tassinari C, Perin A et al. Interleukin-15 triggers the proliferation and cytotoxicity of granular lymphocytes in patients with lymphoproliferative disease of granular lymphocytes. Blood 1997; 89: 201–211.

    CAS  PubMed  Google Scholar 

  6. Zambello R, Trentin L, Facco M, Cerutti A, Sancetta R, Milani A et al. Analysis of the T cell receptor in the lymphoproliferative disease of granular lymphocytes: superantigen activation of clonal CD3+ granular lymphocytes. Cancer Res 1995; 55: 6140–6145.

    CAS  PubMed  Google Scholar 

  7. Lamy T, Liu JH, Landowski TH, Dalton WS, Loughran Jr TP . Dysregulation of CD95/CD95 ligand-apoptotic pathway in CD3+ large granular lymphocyte leukemia. Blood 1998; 92: 4771–4777.

    CAS  PubMed  Google Scholar 

  8. Kawa-Ha K, Ishihara S, Ninomiya T, Yumura-Yagi K, Hara J, Murayama F et al. CD3-negative lymphoproliferative disease of granular lymphocytes containing Epstein–Barr viral DNA. J Clin Invest 1989; 84: 51–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Loughran Jr TP, Hadlock KG, Yang Q, Perzova R, Zambello R, Semenzato G et al. Seroreactivity to an envelope protein of human T-cell leukemia/lymphoma virus in patients with CD3− (natural killer) lymphoproliferative disease of granular lymphocytes. Blood 1997; 90: 1977–1981.

    PubMed  Google Scholar 

  10. Simons K, Ikonen E . Functional rafts in cell membranes. Nature 1997; 387: 569–572.

    Article  CAS  PubMed  Google Scholar 

  11. Holowka D, Baird B . Antigen-mediated IgE receptor aggregation and signaling: a window on cell surface structure and dynamics. Annu Rev Biophys Biomol Struct 1996; 25: 79–112.

    Article  CAS  PubMed  Google Scholar 

  12. Brown DA, London E . Functions of lipid rafts in biological membranes. Annu Rev Cell Dev Biol 1998; 14: 111–136.

    Article  CAS  PubMed  Google Scholar 

  13. Simons K, Toomre D . Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 2000; 1: 31–39.

    Article  CAS  PubMed  Google Scholar 

  14. Cinek T, Horejsi V . The nature of large noncovalent complexes containing glycosyl–phosphatidylinositol-anchored membrane glycoproteins and protein tyrosine kinases. J Immunol 1992; 149: 2262–2270.

    CAS  PubMed  Google Scholar 

  15. Zhang W, Trible RP, Samelson LE . LAT palmitoylation: its essential role in membrane microdomain targeting and tyrosine phosphorylation during T cell activation. Immunity 1998; 9: 239–246.

    Article  CAS  PubMed  Google Scholar 

  16. Resh MD . Myristylation and palmitylation of Src family members: the fats of the matter. Cell 1994; 76: 411–413.

    Article  CAS  PubMed  Google Scholar 

  17. Stefanova I, Horejsi V, Ansotegui IJ, Knapp W, Stockinger H . GPI-anchored cell-surface molecules complexed to protein tyrosine kinases. Science 1991; 254: 1016–1019.

    Article  CAS  PubMed  Google Scholar 

  18. Tuosto L, Parolini I, Schroder S, Sargiacomo M, Lanzavecchia A, Viola A . Organization of plasma membrane functional rafts upon T cell activation. Eur J Immunol 2001; 31: 345–349.

    Article  CAS  PubMed  Google Scholar 

  19. Viola A . The amplification of TCR signaling by membrane dynamic microdomains. Trends Immunol 2001; 22: 322–327.

    Article  CAS  PubMed  Google Scholar 

  20. Semenzato G, Zambello R, Starkebaum G, Oshimi K, Loughran Jr TP . The lymphoproliferative disease of granular lymphocytes: updated criteria for diagnosis. Blood 1997; 86: 256–260.

    Google Scholar 

  21. Viola A, Schroeder S, Sakakibara Y, Lanzavecchia A . T lymphocyte costimulation mediated by reorganization of membrane microdomains. Science 1999; 283: 680–682.

    Article  CAS  PubMed  Google Scholar 

  22. Bachmann MF, Gallimore A, Linkert S, Cerundolo V, Lanzavecchia A, Kopf M et al. Developmental regulation of Lck targeting to the CD8 coreceptor controls signaling in naive and memory T cells. J Exp Med 1999; 189: 1521–1530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pistoia V, Prasthofer EF, Tilden AB, Barton JC, Ferrarini M, Grossi CE et al. Large granular lymphocytes from patients with expanded LGL populations acquire cytotoxic functions and release lymphokines upon in vitro activation. Blood 1986; 68: 1095–1100.

    CAS  PubMed  Google Scholar 

  24. Martin M, Schneider H, Azouz A, Rudd CE . Cytotoxic T lymphocyte antigen 4 and CD28 modulate cell surface raft expression in their regulation of T cell function. J Exp Med 2001; 194: 1675–1681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Montixi C, Langlet C, Bernard AM, Thimonier J, Dubois C, Wurbel MA et al. Engagement of T cell receptor triggers its recruitment to low-density detergent-insoluble membrane domains. EMBO J 1998; 17: 5334–5348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Janes PW, Ley SC, Magee AJ . Aggregation of lipid rafts accompanies signaling via the T cell antigen receptor. J Cell Biol 1999; 147: 447–461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kasten-Sportes C, Zaknoen S, Steis RG, Chan WC, Winton EF, Waldmann TA . T cell receptor gene rearrangement in T-cell large granular leukocyte leukemia: preferential Vα but diverse Jα usage in one of five patients. Blood 1994; 83: 767–775.

    CAS  PubMed  Google Scholar 

  28. Bigouret V, Hoffmann T, Arlettaz L, Villard J, Colonna M, Ticheli A et al. Monoclonal T cell expansions in asymptomatic individuals and in patients with large granular leukemia consist of cytotoxic effector T cells expressing the activating CD94-NKG2C/E and NKD2D killer cell receptors. Blood 2003; 101: 3198–3204.

    Article  CAS  PubMed  Google Scholar 

  29. Zambello R, Falco M, Della Chiesa M, Trentin L, Carollo D, Castriconi R et al. Expression and function of KIR and natural cytotoxicity receptors in NK-type lymphoproliferative diseases of granular lymphocytes (LDGL). Blood 2003; 102: 1797–1805.

    Article  CAS  PubMed  Google Scholar 

  30. Pietra G, Romagnani C, Falco M, Vitale M, Castriconi R, Pende D et al. The analysis of the natural killer-like activity of human cytolytic T lymphocytes revealed HLA-E as a novel target for TCR alpha/beta-mediated recognition. Eur J Immuno 2001; 31: 3687–3693.

    Article  CAS  Google Scholar 

  31. Romagnani C, Pietra G, Falco M, Millo E, Mazzarino P, Biassoni R et al. Identification of HLA-E-specific alloreactive T lymphocytes: a cell subset that undergoes preferential expansion in mixed lymphocyte culture and displays a broad cytolytic activity against allogeneic cells. Proc Natl Acad Sci USA 2002; 99: 11328–11333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Moretta L, Romagnani C, Pietra G, Moretta A, Mingari MC . NK-CTLs, a novel HLA-E-restricted T-cell subset. Trends Immunol 2003; 24: 136–143.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Vincenzo Barnaba (Rome) and Tullio Pozzan (Padua) for critical reading of the manuscript and A Moretta (Genoa) for providing Xa185 mAb, Z270 mAb and BAT221 mAb. We also thank Filippo Gobbo and Davide Carollo for technical assistance. Finally, we are grateful to Mr Martin Donach for editing the manuscript. This study was supported in part by Associazione Italiana per la Ricerca sul Cancro (AIRC), Ministero dell'Istruzione dell'Università e della Ricerca (MIUR) and Consiglio Nazionale delle Ricerche (CNR), Fondo per gli Investimenti della Ricerca di Base (FIRB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Semenzato.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zambello, R., Cabrelle, A., Trentin, L. et al. The raft marker GM1 identifies functional subsets of granular lymphocytes in patients with CD3+ lymphoproliferative disease of granular lymphocytes. Leukemia 18, 771–776 (2004). https://doi.org/10.1038/sj.leu.2403292

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403292

Keywords

Search

Quick links