Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Interleukin-3 receptor in acute leukemia

Abstract

Recent studies indicate that abnormalities of the interleukin-3 receptor (IL-3R) are frequently observed in acute myeloid leukemias (AMLs) and may contribute to the proliferative advantage of leukemic blasts. This review analyzes the evidences indicating that the IL-3R represents one of the target molecules involved in the stimulation of proliferation of AMLs, and the overexpression of the IL-3Rα chain may represent one of the mechanisms contributing to the development of a highly malignant leukemic phenotype. Furthermore, there is evidence that the IL-3Rα is a marker of leukemic stem cells, at variance with normal stem cells that are IL-3Rα. Finally, the IL-3R may represent an important target for the development of new antileukemic drugs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Hahn WC, Weinberg RA . Rules for making human tumor cells. N Engl J Med 2002; 347: 1593–1603.

    CAS  PubMed  Google Scholar 

  2. Hahn WC, Weinberg RA . Modelling the molecular circuity of cancer. Nat Rev Cancer 2002; 2: 331–341.

    Article  CAS  PubMed  Google Scholar 

  3. Tenen DG . Disruption of differentiation in human cancer: AML shows the way. Nat Rev Cancer 2003; 3: 89–101.

    Article  CAS  PubMed  Google Scholar 

  4. Kelly LM, Kutok JL, Williams IR, Boulton CI, Amaral SM, Curley J et al. PML/RARalpha and FLT3/ITD induce an APL-like disease in mouse model. Proc Natl Acad Sci USA 2002; 99: 8283–8288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dowining JR . The core-binding factor leukemias: lessons learned from murine models. Curr Opin Genet Dev 2003; 13: 48–54.

    Article  Google Scholar 

  6. Yuan Y, Zhou L, Miyamoto T, Iwasaki H, Zhang DE . AML1-ETO expression is directly involved in the development of acute myeloid leukemia in the presence of additional mutations. Proc Natl Acad Sci USA 2001; 98: 10398–11403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Higuchi M, O'Brien D, Kumuravelu P, Lenny N, Yeoh EJ, Downing JR . Expression of a conditional AML1-ETO oncogene bypasses embryonic lethality and establishes a murine model of human t(8;21) acute myeloid leukemia. Cancer Cell 2002; 1: 63–74.

    Article  CAS  PubMed  Google Scholar 

  8. Biernaux C, Loos M, Sels A, Huez G, Stryckmans P . Detection of major bcr-abl gene expression at very low level in blood cells of some healthy individuals. Blood 1995; 86: 3118–3122.

    Article  CAS  PubMed  Google Scholar 

  9. Mori H, Colman SM, Xias Z, Ford AM, Healy LE, Donaldson et al. Chromosome translocations and covert leukemic clones are generated during normal fetal development. Proc Natl Acad Sci USA 2002; 99: 8242–8247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Greaves MF, Wiemels J . Origins of chromosome translocations in childhood leukemia. Nat Rev Cancer 2003; 3: 1–11.

    Article  CAS  Google Scholar 

  11. Gilliland DG, Griffin JD . The roles of FLT3 in hematopoiesis and leukemia. Blood 2002; 100: 1532–1542.

    Article  CAS  PubMed  Google Scholar 

  12. Quian Z, Fernald AA, Gadley LA, Larson RA, LeBeau M . Expression profiling of CD34+ hematopoietic stem/progenitor cells reveal distinct subtypes of therapy-related acute myeloid leukemia. Proc Natl Acad Sci USA 2002; 99: 14925–14930.

    Article  CAS  Google Scholar 

  13. Armstrong SA, Kung AL, Mobon AL, Griffin JD, Korsmeyer SJ . Inhibition of Flt3 in MLL: validation and therapeutic target identified by gene expression based classification. Cancer Cell 2003; 3: 173–183.

    Article  CAS  PubMed  Google Scholar 

  14. Yeoh EJ, Rosse ME, Shurtleff SA . Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 2002; 1: 133–143.

    Article  CAS  PubMed  Google Scholar 

  15. Beghini A, Peterlongo P, Rigamonti CB, Larizza L, Cairoli R, Morra E et al. c-Kit mutations in core binding factor leukemias. Blood 2000; 95: 726–727.

    Article  CAS  PubMed  Google Scholar 

  16. Kyoi H, Nasc T, Niakano Y, Jinnai I, Shimazaki C . Prognostic implication of FLT3 and N-RAS mutations in acute myeloid leukemia. Blood 1999; 93: 3074–3080.

    Google Scholar 

  17. Testa U, Riccioni R, Militi S, Coccia E, Stellacci E, Samoggia P et al. Elevated expression of IL-3Rα in acute myelogenous leukemia is associated with enhanced blast proliferation, increased cellularity, and poor prognosis. Blood 2002; 100: 2980–2988.

    Article  CAS  PubMed  Google Scholar 

  18. Blalock WL, Weinstein-Oppenheimer C, Chang F, Hoyle PE, Wang XY, Algate PA et al. Signal transduction, cell-cycle rgeulatory, and anti-apoptotic pathways regulated by IL-3 in hematopoietic cells: possible sites for intervention with anti-neoplastic drugs. Leukemia 1999; 13: 1109–1166.

    Article  CAS  PubMed  Google Scholar 

  19. Begley CJ, Woodcock JM, Stovoski FC, Lopez AF . The structural and functional basis of cytokine receptor activation: lessons from the common β subunit of the granulocyte–macrophage colony stimulating factor, interleukin-3 and IL-5 receptors. Blood 1997; 89: 1471–1482.

    Article  Google Scholar 

  20. Miyajima A, Mui AL, Ogorochi T, Sakamaki K . Receptors for granulocyte–macrophage colony-stimulating factor, interleukin-3, and interleukin-5. Blood 1993; 82: 1960–1974.

    Article  CAS  PubMed  Google Scholar 

  21. Kitamura T, Sato N, Arai K, Miyajima A . Expression cloning of the human IL-3 receptor cDNA reveals shared beta subunit for the human IL-3 and GM-CSF receptors. Cell 1991; 66: 1165–1174.

    Article  CAS  PubMed  Google Scholar 

  22. Evans C, Pierce A, Winter SA, Spooncer E, Heyworth C, Whetton AD . Activation of granulocyte–macrophage colony-stimulating factor and interleukin-3 receptor subunits in a multipotential hematopoietic progenitor cell line leads to differential effects on development. Blood 1999; 94: 1504–1514.

    Article  CAS  PubMed  Google Scholar 

  23. Evans C, Ariffin S, Pierce A, Whetton AD . Identification of primary structural features that define the differential actions of IL-3 and GM-CSF receptors. Blood 2002; 100: 3164–3174.

    Article  CAS  PubMed  Google Scholar 

  24. Guthridge MA, Stomski F, Bany EF, Winnel W, Woodcock JM, McClure BJ et al. Site-specific serine phosphorylation of the IL-3 receptor is required for hemopoietic cell survival. Mol Cell 2000; 6: 99–108.

    Article  CAS  PubMed  Google Scholar 

  25. Wang JM, Lai Mz, Yang-Yen HF . Interleukin-3 stimulation of mcl-1 gene transcription involves activation of the PU.1 transcription factor through a p38 mitogen-activated protein kinase-dependent pathway. Mol Cell Biol 2003; 23: 1896–1909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Guthridge MA, Barry EF, Felquer FA, McClure BJ, Stomski FC, Ramshaw H et al. The phosphosrine-585-dependent pathway of the GM-CSF/IL-3/IL-5 receptors mediates hemopoietic cell survival through activation of NF-κB and induction of bcl-2. Blood 2003, in press.

  27. Karlsson R, Engstrom M, Jonsson M, Karlberg P, Pronk CJ, Richter A et al. Phosphatidylinositol 3-kinase is essential for Kit ligand-mediated survival, whereas interleukin-3 and Flt3 ligand induce expression of antiapoptotic Bcl-2 family genes. J Leukoc Biol 2003; 74: 923–931.

    Article  CAS  PubMed  Google Scholar 

  28. Fox CJ, Hammerman PS, Cinalli RM, Master SR, Chodosh LA, Thompson CB . The serine/threonine kinase Pim-2 is a transcriptionally regulated apoptotic inhibitor. Genes Dev 2003; 17: 1841–1854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. White E . The pims and outs of survival signaling: role for the Pim-2 protein kinase in the suppression of apoptosis by cytokines. Genes Dev 2003; 17: 1813–1816.

    Article  CAS  PubMed  Google Scholar 

  30. Yu WM, Hawley TS, Hawlet RG, Qu CK . Catalytic-dependent and -independemt roles of SHP-2 tyrosin phosphatase in interleukin-3 signaling. Oncogene 2003; 22: 5995–6004.

    Article  CAS  PubMed  Google Scholar 

  31. Lee JT, McCubrey JA . The Raf/MEK/ERK signal transduction cascade as a target for chemotherapeutic intervention. Leukemia 2002; 16: 486–507.

    Article  CAS  PubMed  Google Scholar 

  32. Chang F, Lee JT, Navolanic PM, Blalock WL, Franklin RA, McCubrey JA . Involvment of PI3K/AKT pathway in cell cycle progression, apoptosis and neoplastic transformation: a target for cancer chemotherapy. Leukemia 2003; 17: 590–603.

    Article  CAS  PubMed  Google Scholar 

  33. Chang F, Steelman LS, Lee JT, Shelton JG, Navolanic PM, Franklin RA et al. Signal transduction mediated by Ras/Raf/MEK/ERK pathway from cytokine receptors to transcription factors: potential targeting for therapeutic intervention. Leukemia 2003; 17: 1263–1293.

    Article  CAS  PubMed  Google Scholar 

  34. Shelton JG, Steelman LS, Lee JT, Knapp SL, Blalock WL, Moye PW et al. Effects of the RAF/MEK/ERK and PI3K/Akt signal transduction pathways on the abrogation of cytokine-dependence and prevention of apoptosis in hematopoietic cells. Oncogene 2003; 22: 2478–2492.

    Article  CAS  PubMed  Google Scholar 

  35. D'Andrea R, Rayner J, Moretti P, LopezA, Goodall GJ, Gonda TJ et al. A mutataion of the common receptor subunit for interleukin-3 (IL-3), granulocyte–macrophage colony-stimulating factor, and IL-5 that leads to ligand independence and tumorigenicity. Blood 1994; 83: 2802–2808.

    Article  CAS  PubMed  Google Scholar 

  36. Hannemann J, Hara T, Kawai M, Miyajima A, Ostertag W, Stocking C . Sequential mutations in the interleukin-3 (IL3)/granulocyte macrophage colony-stimulating factor/IL5 receptor β-subunit genes are necessary for the complete conversion to growth autonomy mediated by a trucated βc subunit. Mol Cell Biol 1995; 15: 2402–2412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mc Cormack MP, Gonda TJ . Expression of activated mutants of the human interleukin-3/interleukin-5/granulocyte–macrophage colony-stimulating factor receptor common β subunit in primary hematopoietic cells induces factor-independent proliferation and differentiation. Blood 1997; 90: 1471–1481.

    Article  CAS  Google Scholar 

  38. Ichihara M, Hara T, Takagi M, Cho LC, Gorman DM, Miyajima A . Impaired interleukin-3 (IL-3) response on the A/J mouse is caused by a branch point deletion of the IL-3 receptor α subunit gene. EMBO J 1995; 14: 939–950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hara T, Ichihara M, Takagi M, Miyajima A . Interleukin-3 (IL-3) poor-responsive inbred mouse strains carry the identical deletion of a branch point in the IL-3 receptor α subunit gene. Blood 1995; 85: 2331–2336.

    Article  CAS  PubMed  Google Scholar 

  40. Algate PA, Steelman LS, Mayo MW, Miyajima A, McCubrey JA . Regulation of the interleukin-3 (IL-3) receptor by IL-3 in the fetal liver-derived FL5.12 cell line. Blood 1994; 83: 2459–2468.

    Article  CAS  PubMed  Google Scholar 

  41. Steelman LS, Algate PA, Blalock WL, Wang XY, Prevost KD, Hoyle PE et al. Oncogenic effects of overexpression of the interleukin-3 receptor on hematopoietic cells. Leukemia 1996; 10: 528–542.

    CAS  PubMed  Google Scholar 

  42. Nishinakamura R, Nakayama N, Hirabayashi Y, Inoue T, Aud D, Mori T et al. Mice deficient for the IL-3/GM-CSF/IL-5 beta c receptor exhibit lung pathology and impaired immune response, with beta II receptor-deficient mice are normal. Immunity 1995; 2: 211–222.

    Article  CAS  PubMed  Google Scholar 

  43. Robb L, Drinkwater CC, Metcalf D, Li R, Kontgen F, Nicola NA et al. Hematopoietic and lung abnormalities in mice with a null mutation of the common β subunit of the receptors for granulocyte–macrophage colony-stimulating factor and interleukins 3 and 5. Proc Natl Acad Sci USA 1995; 92: 9565–9569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dirksen U, Nishinakamura R, Groneck P, Hattenhorst U, Nogee L, Murray R et al. Human pulmonary alvoeolar proteinosis associated with a deficit in GM-CSF/IL-3/IL-55 receptor common beta chain expression. J Clin Invest 1997; 100: 2211–2217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bonfield TL, Raychaudhuri B, Malur A, Abraham S, Trapnell BC, Kavuru MS et al. PU.1 regulation of human alveolar macrophage differentiation requires granulocyte macrophage colony stimulating factor (GM-CSF). Am J Physiol Lung Cell Mol Physiol 2003; 285: L1132–L1136.

    Article  CAS  PubMed  Google Scholar 

  46. Dirksen U, Hattenhorst U, Schneider P, Schrotewn H, Gobel U, Bocking A et al. Defective expression of granulocyte–macrophage colony-stimulating factor/interleukin-3/interleukin-5 receptor common β chain in children with acute myeloid leukemia associated with respiratory failure. Blood 1998; 92: 1097–1103.

    CAS  PubMed  Google Scholar 

  47. Delwel R, Salem M, Pellens C, Dorssers L, Wagemaker G, Clarks S et al. Growth regulation of human acute myeloid leukemia: effects of five recombinant hematopoietic factors in a serum-free cluture system. Blood 1988; 72: 1944–1949.

    Article  CAS  PubMed  Google Scholar 

  48. Vellenga E, Ostapovicz D, O'Route B, Griffin JD . Effects of recombinant IL-3, GM-CSF, and G. CSF on proliferation of leukemic clonogenic cells in short-term and long-term cultures. Leukemia 1987; 8: 584–589.

    Google Scholar 

  49. Budel LM, Touw IP, Delwel R, Clark SC, Lowenberg B . Interleukin-3 and granulocyte–macrophage colony-stimulating factor receptors on human acute myelocytic leukemia cells and relationship to the proliferative response. Blood 1989; 74: 565–571.

    Article  CAS  PubMed  Google Scholar 

  50. Budel LM, Elber O, Hoogerbrugger H, Delwel R, Mahmoud LA, Lowenberg B et al. Common binding structure for granulocyte–macrophage colony stimulating factor and interleukin-3 on human acute myeloid leukemia cells and monocytes. Blood 1990; 75: 1439–1445.

    Article  CAS  PubMed  Google Scholar 

  51. Sun Q, Woodcock JM, Rapoport A, Stumski FC, Korpelainen EI, Ba CJ et al. Monoclonal antibody 7G3 recognizes the N-terminal domain of the human interleukin-3 (IL-3) receptor alpha-chain and functions as a specific IL-3 receptor antagonist. Blood 1996; 87: 83–92.

    Article  CAS  PubMed  Google Scholar 

  52. Testa U, Fossati C, Samoggia P, Masciulli R, Mariani G, Hassan HJ et al. Expression of growth factor receptors in unilineage differentiation culture of purified hematopoietic progenitors. Blood 1996; 88: 3391–3406.

    Article  CAS  PubMed  Google Scholar 

  53. Militi S, Riccioni R, Parolini I, Sposi NM, Samoggia P, Pelosi E et al. Expression of interleukin 3 and granulocyte–macrophage colony stimulating factor receptor common chain betaC, betaIT in normal hematopoiesis: lineage specificity and proliferation-independent induction. Br J Haematol 2000; 111: 441–451.

    CAS  PubMed  Google Scholar 

  54. Munoz L, Nomdedeu JF, Lopez O, Carnicer MJ, Bellido M, Aventin A et al. Interleukin-3 receptor alpha chain (CD123) is widely expressed in hematologic malignancies. Haematologica 2001; 86: 1261–1269.

    CAS  PubMed  Google Scholar 

  55. Jordan CJ, Upchrch D, Szilvassy SJ, Guzman ML, Howard DS, Pettigrew AL et al. The interleukin-3 receptor alpha is a unique marker for human acute myelogenous leukemia stem cells. Leukemia 2000; 14: 1777–1784.

    Article  CAS  PubMed  Google Scholar 

  56. Guzman ML, Swiderski CF, Howard DS, Grimes BA, Rossi RM, Szilvassy SJ et al. Preferential induction of apoptosis for primary human leukemic stem cells. Proc Natl Acad Sci USA 2002; 99: 16220–16225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lacronique V, Boureux A, Valle VD, Poirel H, Quang CT, Mauchauffe M et al. A TEL-JAK2 fusion protein with constitutive kinase activity in human leukemia. Science 1997; 278: 1309–1312.

    Article  CAS  PubMed  Google Scholar 

  58. Wheadon H, Welham MJ . The coupling of TEL/PDGFbetaR to distinct functional responses is modulated in the presence of cytokine: involvment of a mitogen-activated protein kinases. Blood 2003; 102: 1480–1489.

    Article  CAS  PubMed  Google Scholar 

  59. Klejman A, Schreiner SJ, Nieberowska-Skorska M, Slupianek A, Wi M, Smithgall TE et al. The Src family kinase Hck couples BCR/ABL to STAT5 activation in myeloid leukemia cells. EMBO J 2002; 21: 5766–5774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Huang M, Dorsey JF, Epling-Burnette PK, Mimmanapalli R, Lamboski TH, Laughran TP et al. Inhibition of Bcr-Abl kinase activity by PD0970 blocks constitutive activation of Stat5 and growth of CML cells. Oncogene 2002; 21: 8804–8816.

    Article  CAS  PubMed  Google Scholar 

  61. Stirewalt DL, Radich JP . The role of FLT3 in haematopoietic malignancies. Nat Rev Cancer 2003; 3: 650–665.

    Article  CAS  PubMed  Google Scholar 

  62. Spiekermann K, Bagrintseva K, Scwab R, Scmieja K, Hiddemann W . Overexpression and constitutive activation of FLT3 induces STA5 activation in primary acute myeloid leukemia blast cells. Clin Cancer Res 2003; 9: 2140–2150.

    CAS  PubMed  Google Scholar 

  63. Taketani T, Taki T, Sugita K, Furuichi Y, Ishii E, Hanada R et al. FLT3 mutataions in the activation loop of tyrosine kinase domain are frequently found in infant acute lymphoblastic leukemia (ALL) with MLL rearrangements and pediatric ALL with hyperdiploidy. Blood 2003, in press.

  64. Murata K, Kumagai H, Kawashima T, Tamitsu K, Irie M, Nakajima H et al. Selective cytotoxic mechanism of GTP-14564, a novel tyrosine kinase inhibitor in leukemia cells expressing a constitutively active FLT3. J Biol Chem 2003; 278: 32892–32898.

    Article  CAS  PubMed  Google Scholar 

  65. Minami Y, Yamamoto K, Kiyoi H, Ueda R, Saito H, Naoe T . Different anti-apoptotic pathways between wild-type and mutated FLT3: insights into therapeutic targets in leukemia. Blood 2003; 102: 2969–2975.

    Article  CAS  PubMed  Google Scholar 

  66. Mizuki M, Schwable J, Steur C, Choudhary C, Agrawal S, Sarin B et al. Suppression of myeloid transcription factors and induction of STAT response genes by AML-specific Flt3 mutations. Blood 2003; 101: 3164–3173.

    Article  CAS  PubMed  Google Scholar 

  67. Kelly L, Claek J, Gilliland DG . Comprehensive genotypic analysis of leukemia: clinical and therapeutic implications. Curr Opin Oncol 2002; 14: 10–18.

    Article  CAS  PubMed  Google Scholar 

  68. Levis S, Small D . IT Does matter in leukemia. Leukemia 2003; 17: 1738–1752.

    Article  CAS  PubMed  Google Scholar 

  69. Phan V, Shultz DB, Truong BT, Blake TJ, Brown AL, Gonda TJ et al. Cooperation of cytokine signaling with chimeric transcription factors in leukemogenesis: PML-retinoic acid receptor alpha blocks growth factor-mediated differentiation. Mol Cell Biol 2003; 23: 4573–4585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Gale RE, Freebunn RW, Khwaya A, Chopra R, Linch DC . A truncated isoform of the human β chain common to the receptors for granulocyte–macrophage colony-stimulating factor, interleukin-3 (IL-3), and IL-5 with increased mRNA expression in some patients with acute leukemia. Blood 1998; 91: 54–63.

    Article  CAS  PubMed  Google Scholar 

  71. Jiang XJ, Lopez A, Holyoake T, Eaves A, Eaves C . Autocrine production and action of IL-3 and granulocyte colony-stimulating factor in chronic myeloid leukemia. Proc Natl Acad Sci USA 1999; 96: 12804–12809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Jiang XJ, Yip C, Eisterer W, Chaladon Y, Stuible M, Eaves C . Primitive interleukin 3 null hemopoietic cells transduced with BCR-ABL show accelerated loss after culture of factor independence in vitro and leukemogenic activity in vivo. Blood 2002; 100: 3731–3740.

    Article  CAS  PubMed  Google Scholar 

  73. Holyoake TL, Jiang X, Jorgensen HG, Graham S, Alcom MJ, Laid C et al. Primitive quiescent leukemic cells from patients with chronic myeloid leukemia spontaneously initiate factor-independent growth in vitro in association with up-regulation of expression of interleukin-3. Blood 2001; 97: 720–728.

    Article  CAS  PubMed  Google Scholar 

  74. Young DC, Griffin JD . Autocrine secretion of GM-CSF in acute myeloblastic leukemia. Blood 1986; 68: 1178–1181.

    Article  CAS  PubMed  Google Scholar 

  75. Ailles LE, Gurhard B, Hogge DE . Detection and characterization of primitive malignant and normal progenitors in patients with acute myelogenous leukemia using long-term culture with supportive feeder layers and cytokines. Blood 1997; 90: 2555–2564.

    Article  CAS  PubMed  Google Scholar 

  76. Nowak R, Oelsahlagel U, Gurth H, Range U, Albrecht S, Krebs U et al. Relations between IL-3-induced proliferation and in vitro cytokine secretion of bone marrow cells from AML patients. Cytokine 1999; 11: 435–442.

    Article  CAS  PubMed  Google Scholar 

  77. Guan Y, Gerhard B, Hogge DE . Detection, isolation, and stimulation of quiescent primitive leukemic progenitor cells from patients with acute myeloid leucemia (AML). Blood 2003; 101: 3142–3149.

    Article  CAS  PubMed  Google Scholar 

  78. Zhang R, Levis M, Piloto O, Baldwin BR, Gorin NC, Beran M et al. FLT3 ligand causes autocrine signaling in acute myeloid leukemia cells. Blood 2003, In press.

  79. Chan CH, Blazar BR, Greenfield L, Kreitman RJ, Vallera DA . Reactivity of murine cytokine fusion toxin, diphteria toxin390-murine interleukin-3 (DT390-mIL-3), with bone marrow progenitor cells. Blood 1996; 88: 1445–1456.

    Article  CAS  PubMed  Google Scholar 

  80. Vallera DA, Seo SY, Panoskaltis-Mortari A, Griffin JD, Blazar BR . Targeting myeloid leukemia with a DT390-mIL-3 fusion immunotoxin: ex vivo and in vivo studies in mice. Prot Eng 1999; 12: 779–785.

    Article  CAS  Google Scholar 

  81. Frankel AE, McCubrey JA, Delatte S, Ramage J, Kiser M, Kucera GL et al. Diphteria toxin fused to human interleukin-3 is toxic to blasts from patients with myeloid leukemia. Leukemia 2000; 14: 576–585.

    Article  CAS  PubMed  Google Scholar 

  82. Feuring_buske M, Frankel AE, Alexander RL, Gerhard B, Hogge DE . A diphteria toxin-interleukin 3 fusion protein is cytotoxic to primitive acute myeloid leukemia progenitors, but spares normal progenitors. Cancer Res 2002; 62: 1730–1736.

    CAS  PubMed  Google Scholar 

  83. Black JH, McCubrey JA, Willingham MC, Ramage J, Hogge DE, Frankel AE . Diphteria toxin-interleukin-3 fusion protein (DT388IL3) prolongs disease-free survival of leukemic immunocompromised mice. Leukemia 2003; 17: 155–159.

    Article  CAS  PubMed  Google Scholar 

  84. Franker AE, Powell BL, Hall PD, Case D, Kreitman RJ . Phase I trial of a novel diphteria toxin/granulocyte macrophage colony-stimulating factor fusion protein (DT388GMCSF) for refractory or relapsed acute myeloid leukemia. Clin Cancer Res 2002; 8: 1004–1013.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U Testa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Testa, U., Riccioni, R., Diverio, D. et al. Interleukin-3 receptor in acute leukemia. Leukemia 18, 219–226 (2004). https://doi.org/10.1038/sj.leu.2403224

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403224

Keywords

This article is cited by

Search

Quick links