Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Chronic Lymphocytic Leukemia

Post-transcriptional regulation of inducible nitric oxide synthase in chronic lymphocytic leukemia B cells in pro- and antiapoptotic culture conditions

Abstract

Functional inducible NOS (iNOS) may be involved in the prolonged lifespan of chronic lymphocytic leukemia cells (B-CLL), although the exact mechanisms implicated remain elusive as yet. In this work, we have examined iNOS expression in normal B lymphocytes and B-CLL cells in pro- and antiapoptotic conditions. Our results demonstrate: (1) The existence of a new splice variant characterized by a complete deletion of exon 14 (iNOS 13–1614del), which was preferentially detected in normal B lymphocytes and may represent an isoform that could play a role in the regulation of enzyme activity. (2) The existence of another alternatively spliced iNOS mRNA transcript involving a partial deletion of the flavodoxin region (iNOS 13–16neg) was correlated to a decreased B-CLL cell viability. The 9-β-D-arabinofuranosyl-2-fluoradenine or fludarabine (F-ara) treatment induced iNOS 13–16neg transcript variants, whereas IL-4 enhanced both the transcription of variants, including these exons (iNOS 13–16pos), and the expression of a 122 kDa iNOS protein. These results suggest that in B-CLL, a regulation process involving nitric oxide (NO) levels could occur by a post-transcriptional mechanism mediated by soluble factors. Our results also provide an insight into a new complementary proapoptotic action of F-ara in B-CLL by the induction of particular iNOS splice variants, leading to the activation of a caspase-3-dependent apoptotic pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Dameshek W . Chronic lymphocytic leukemia an accumulative disease of immunolgically incompetent lymphocytes. Blood 1967; 29 (Suppl.): 566–584.

    Google Scholar 

  2. Reed JC . Molecular biology of chronic lymphocytic leukemia. Semin Oncol 1998; 25: 11–18.

    CAS  PubMed  Google Scholar 

  3. Keating MJ . Chronic lymphocytic leukemia. Semin Oncol 1999; 26: 107–114.

    CAS  PubMed  Google Scholar 

  4. Collins RJ, Verschuer LA, Harmon BV, Prentice RL, Pope JH, Kerr JF . Spontaneous programmed death (apoptosis) of B-chronic lymphocytic leukaemia cells following their culture in vitro. Br J Haematol 1989; 71: 343–350.

    Article  CAS  PubMed  Google Scholar 

  5. Mainou-Fowler T, Prentice AG . Modulation of apoptosis with cytokines in B-cell chronic lymphocytic leukaemia. Leukemia Lymphoma 1996; 21: 369–377.

    Article  CAS  PubMed  Google Scholar 

  6. Panayiotidis P, Jones D, Ganeshaguru K, Foroni L, Hoffbrand AV . Human bone marrow stromal cells prevent apoptosis and support the survival of chronic lymphocytic leukaemia cells in vitro. Br J Haematol 1996; 92: 97–103.

    Article  CAS  PubMed  Google Scholar 

  7. Castejon R, Vargas JA, Romero Y, Briz M, Munoz RM, Durantez A . Modulation of apoptosis by cytokines in B-cell chronic lymphocytic leukemia. Cytometry 1999; 38: 224–230.

    Article  CAS  PubMed  Google Scholar 

  8. Jewell AP, Worman CP, Lydyard PM, Yong KL, Giles FJ, Goldstone AH . Interferon-alpha up-regulates bcl-2 expression and protects B-CLL cells from apoptosis in vitro and in vivo. Br J Haematol 1994; 88: 268–274.

    Article  CAS  PubMed  Google Scholar 

  9. Panayiotidis P, Ganeshaguru K, Jabbar SA, Hoffbrand AV . Alpha-interferon (alpha-IFN) protects B-chronic lymphocytic leukaemia cells from apoptotic cell death in vitro. Br J Haematol 1994; 86: 169–173.

    Article  CAS  PubMed  Google Scholar 

  10. Panayiotidis P, Ganeshaguru K, Jabbar SA, Hoffbrand AV . Interleukin-4 inhibits apoptotic cell death and loss of the bcl-2 protein in B-chronic lymphocytic leukaemia cells in vitro. Br J Haematol 1993; 85: 439–445.

    Article  CAS  PubMed  Google Scholar 

  11. Dancescu M, Rubio-Trujillo M, Biron G, Bron D, Delespesse G, Sarfati M . Interleukin 4 protects chronic lymphocytic leukemic B cells from death by apoptosis and upregulates Bcl-2 expression. J Exp Med 1992; 176: 1319–1326.

    Article  CAS  PubMed  Google Scholar 

  12. Chaouchi N, Wallon C, Goujard C, Tertian G, Rudent A, Caput D et al. Interleukin-13 inhibits interleukin-2-induced proliferation and protects chronic lymphocytic leukemia B cells from in vitro apoptosis. Blood 1996; 87: 1022–1029.

    CAS  PubMed  Google Scholar 

  13. Reittie JE, Yong KL, Panayiotidis P, Hoffbrand AV . Interleukin-6 inhibits apoptosis and tumour necrosis factor induced proliferation of B-chronic lymphocytic leukaemia. Leukemia Lymphoma 1996; 22: 83–90.

    Article  CAS  PubMed  Google Scholar 

  14. Francia di Celle P, Mariani S, Riera L, Stacchini A, Reato G, Foa R . Interleukin-8 induces the accumulation of B-cell chronic lymphocytic leukemia cells by prolonging survival in an autocrine fashion. Blood 1996; 87: 4382–4389.

    CAS  PubMed  Google Scholar 

  15. Brune B, von Knethen A, Sandau KB . Nitric oxide and its role in apoptosis. Eur J Pharmacol 1998; 351: 261–272.

    Article  CAS  PubMed  Google Scholar 

  16. Dimmeler S, Zeiher AM . Nitric oxide and apoptosis: another paradigm for the double-edged role of nitric oxide. Nitric Oxide 1997; 1: 275–281.

    Article  CAS  PubMed  Google Scholar 

  17. Nicotera P, Brune B, Bagetta G . Nitric oxide: inducer or suppressor of apoptosis? Trends Pharmacol Sci 1997; 18: 189–190.

    Article  CAS  PubMed  Google Scholar 

  18. Mannick JB, Asano K, Izumi K, Kieff E, Stamler JS . Nitric oxide produced by human B lymphocytes inhibits apoptosis and Epstein–Barr virus reactivation. Cell 1994; 79: 1137–1146.

    Article  CAS  PubMed  Google Scholar 

  19. Brito C, Naviliat M, Tiscornia AC, Vuillier F, Gualco G, Dighiero G et al. Peroxynitrite inhibits T lymphocyte activation and proliferation by promoting impairment of tyrosine phosphorylation and peroxynitrite-driven apoptotic death. J Immunol 1999; 162: 3356–3366.

    CAS  PubMed  Google Scholar 

  20. Moncada S, Palmer RM, Higgs EA . Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 1991; 43: 109–142.

    CAS  PubMed  Google Scholar 

  21. Zhao H, Dugas N, Mathiot C, Delmer A, Dugas B, Sigaux F et al. B-cell chronic lymphocytic leukemia cells express a functional inducible nitric oxide synthase displaying anti-apoptotic activity. Blood 1998; 92: 1031–1043.

    CAS  PubMed  Google Scholar 

  22. Kolb JP, Roman V, Mentz F, Zhao H, Rouillard D, Dugas N et al. Contribution of nitric oxide to the apoptotic process in human B cell chronic lymphocytic leukaemia. Leukemia Lymphoma 2001; 40: 243–257.

    Article  CAS  PubMed  Google Scholar 

  23. Taylor BS, Geller DA . Molecular regulation of the human inducible nitric oxide synthase (iNOS) gene. Shock 2000; 13: 413–424.

    Article  CAS  PubMed  Google Scholar 

  24. Ganster RW, Geller DA . Regulation of the expression of NOS isoform. In: Ignarro LJ (ed). Nitric Oxide: Biology and Pathobiology, 1st edn. San Diego: Academic Press, 2000, pp. 129–156.

    Chapter  Google Scholar 

  25. Chartrain NA, Geller DA, Koty PP, Sitrin NF, Nussler AK, Hoffman EP et al. Molecular cloning, structure, and chromosomal localization of the human inducible nitric oxide synthase gene. J Biol Chem 1994; 269: 6765–6772.

    CAS  PubMed  Google Scholar 

  26. Eissa NT, Strauss AJ, Haggerty CM, Choo EK, Chu SC, Moss J . Alternative splicing of human inducible nitric-oxide synthase mRNA. Tissue-specific regulation and induction by cytokines. J Biol Chem 1996; 271: 27184–27187.

    Article  CAS  PubMed  Google Scholar 

  27. Keating MJ, O'Brien S, Lerner S, Koller C, Beran M, Robertson LE et al. Long-term follow-up of patients with chronic lymphocytic leukemia (CLL) receiving fludarabine regimens as initial therapy. Blood 1998; 92: 1165–1171.

    CAS  PubMed  Google Scholar 

  28. Robak T, Kasznicki M . Alkylating agents and nucleoside analogues in the treatment of B cell chronic lymphocytic leukemia. Leukemia 2002; 16: 1015–1027.

    Article  CAS  PubMed  Google Scholar 

  29. Genini D, Adachi S, Chao Q, Rose DW, Carrera CJ, Cottam HB et al. Deoxyadenosine analogs induce programmed cell death in chronic lymphocytic leukemia cells by damaging the DNA and by directly affecting the mitochondria. Blood 2000; 96: 3537–3543.

    CAS  PubMed  Google Scholar 

  30. Catapano CV, Perrino FW, Fernandes DJ . Primer RNA chain termination induced by 9-beta-D-arabinofuranosyl-2-fluoroadenine 5′-triphosphate. A mechanism of DNA synthesis inhibition. J Biol Chem 1993; 268: 7179–7185.

    CAS  PubMed  Google Scholar 

  31. Yang SW, Huang P, Plunkett W, Becker FF, Chan JY . Dual mode of inhibition of purified DNA ligase I from human cells by 9-beta-D-arabinofuranosyl-2-fluoroadenine triphosphate. J Biol Chem 1992; 267: 2345–2349.

    CAS  PubMed  Google Scholar 

  32. Binet JL, Auquier A, Dighiero G, Chastang C, Piguet H, Goasguen J et al. A new prognostic classification of chronic lymphocytic leukemia derived from a multivariate survival analysis. Cancer 1981; 48: 198–206.

    Article  CAS  PubMed  Google Scholar 

  33. Chomczynski P, Sacchi N . Single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction. Anal Biochem 1987; 162: 156–159.

    Article  CAS  PubMed  Google Scholar 

  34. Levesque MC, Misukonis MA, O'Loughlin CW, Chen Y, Beasley BE, Wilson DL et al. IL-4 and interferon gamma regulate expression of inducible nitric oxide synthase in chronic lymphocytic leukemia cells. Leukemia 2003; 17: 442–450.

    Article  CAS  PubMed  Google Scholar 

  35. Kolb JP . Mechanisms involved in the pro- and antiapoptotic role of NO in human leukemia. Leukemia 2000; 14: 1685–1694.

    Article  CAS  PubMed  Google Scholar 

  36. Beltran B, Mathur A, Duchen MR, Erusalimsky JD, Moncada S . The effect of nitric oxide on cell respiration: a key to understanding its role in cell survival or death. Proc Natl Acad Sci USA 2000; 97: 14602–14607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Eissa NT, Haggerty CM, Palmer CD, Patton W, Moss J . Identification of residues critical for enzymatic activity in the domain encoded by exons 8 and 9 of the human inducible nitric oxide synthase. Am J Respir Cell Mol Biol 2001; 24: 616–620.

    Article  CAS  PubMed  Google Scholar 

  38. Eissa NT, Yuan JW, Haggerty CM, Choo EK, Palmer CD, Moss J . Cloning and characterization of human inducible nitric oxide synthase splice variants: a domain, encoded by exons 8 and 9, is critical for dimerization. Proc Natl Acad Sci USA 1998; 95: 7625–7630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rao KM . Molecular mechanisms regulating iNOS expression in various cell types. J Toxicol Environ Health B Crit Rev 2000; 3: 27–58.

    Article  CAS  PubMed  Google Scholar 

  40. Frank DA, Mahajan S, Ritz J . B lymphocytes from patients with chronic lymphocytic leukemia contain signal transducer and activator of transcription (STAT) 1 and STAT3 constitutively phosphorylated on serine residues. J Clin Invest 1997; 100: 3140–3148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kneitz C, Goller M, Seggewiss R, Yaman A, Serfling E, Tony HP . STAT6 and the regulation of CD23 expression in B-chronic lymphocytic leukemia. Leukemia Res 2000; 24: 331–337.

    Article  CAS  Google Scholar 

  42. Zheng Z, Venkatapathy S, Rao G, Harrington CA . Expression profiling of B cell chronic lymphocytic leukemia suggests deficient CD1-mediated immunity, polarized cytokine response, altered adhesion and increased intracellular protein transport and processing of leukemic cells. Leukemia 2002; 16: 2429–2437.

    Article  CAS  PubMed  Google Scholar 

  43. Mu X, Kay NE, Gosland MP, Jennings CD . Analysis of blood T-cell cytokine expression in B-chronic lymphocytic leukaemia: evidence for increased levels of cytoplasmic IL-4 in resting and activated CD8T cells. Br J Haematol 1997; 96: 733–735.

    Article  CAS  PubMed  Google Scholar 

  44. Mainou-Fowler T, Miller S, Proctor SJ, Dickinson AM . The levels of TNF alpha, IL4 and IL10 production by T-cells in B-cell chronic lymphocytic leukaemia (B-CLL). Leukemia Res 2001; 25: 157–163.

    Article  CAS  Google Scholar 

  45. Kolodziejski PJ, Musial A, Koo JS, Eissa NT . Ubiquitination of inducible nitric oxide synthase is required for its degradation. Proc Natl Acad Sci USA 2002; 99: 12315–12320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Musial A, Eissa NT . Inducible nitric-oxide synthase is regulated by the proteasome degradation pathway. J Biol Chem 2001; 276: 24268–24273.

    Article  CAS  PubMed  Google Scholar 

  47. Coers W, Timens W, Kempinga C, Klok PA, Moshage H . Specificity of antibodies to nitric oxide synthase isoforms in human, guinea pig, rat, and mouse tissues. J Histochem Cytochem 1998; 46: 1385–1392.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from Comisión Honoraria de Lucha contra el Cáncer, CSIC (Universidad de la República, Uruguay), Schering Uruguaya and Fundación Manuel Pérez. We thank Rafael Radi, Sergio Bianchi, Nicolás Arrambide, Gerard Dumas and Yuri Vasconcelos for critical discussion.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tiscornia, A., Cayota, A., Landoni, A. et al. Post-transcriptional regulation of inducible nitric oxide synthase in chronic lymphocytic leukemia B cells in pro- and antiapoptotic culture conditions. Leukemia 18, 48–56 (2004). https://doi.org/10.1038/sj.leu.2403169

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403169

Keywords

This article is cited by

Search

Quick links