Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Leukemogenesis

Dual mutations in the AML1 and FLT3 genes are associated with leukemogenesis in acute myeloblastic leukemia of the M0 subtype

Abstract

Point mutations of the transcription factor AML1 are associated with leukemogenesis in acute myeloblastic leukemia (AML). Internal tandem duplications (ITDs) in the juxtamembrane domain and mutations in the second tyrosine kinase domain of the Fms-like tyrosine kinase 3 (FLT3) gene represent the most frequent genetic alterations in AML. However, such mutations per se appear to be insufficient for leukemic transformation. To evaluate whether both AML1 and FLT3 mutations contribute to leukemogenesis, we analyzed mutations of these genes in AML M0 subtype in whom AML1 mutations were predominantly observed. Of 51 patients, eight showed a mutation in the Runt domain of the AML1 gene: one heterozygous missense mutation with normal function, five heterozygous frameshift mutations and two biallelic nonsense or frameshift mutations, resulting in haploinsufficiency or complete loss of the AML1 activities. On the other hand, a total of 10 of 49 patients examined had the FLT3 mutation. We detected the FLT3 mutation in five of eight (63%) patients with AML1 mutation, whereas five of 41 (12%) without AML1 mutation showed the FLT3 mutation (P=0.0055). These observations suggest that reduced AML1 activities predispose cells to the acquisition of the activating FLT3 mutation as a secondary event leading to full transformation in AML M0.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Miyoshi H, Shimizu K, Kozu T, Maseki N, Kaneko Y, Ohki M . The t(8;21) breakpoints on chromosome 21 in acute myeloid leukemia clustered within a limited region of a novel gene, AML1. Proc Natl Acad Sci USA 1991; 88: 10431–10434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Nucifora G, Rowley JD . AML1 and the 8;21 and 3;21 translocations in acute and chronic myeloid leukemia. Blood 1995; 86: 1–14.

    CAS  PubMed  Google Scholar 

  3. Tenen DG, Hromas R, Licht JD, Zhang DE . Transcription factors, normal myeloid development, and leukemia. Blood 1997; 90: 489–519.

    CAS  PubMed  Google Scholar 

  4. Speck NA, Gilliland DG . Core-binding factors in haematopoiesis and leukaemia. Nat Rev Cancer 2002; 2: 502–513.

    Article  CAS  PubMed  Google Scholar 

  5. Asou N . The role of a Runt domain transcription factor AML1/RUNX1 in leukemogenesis and its clinical implications. Crit Rev Oncol Hematol 2003; 45: 129–150.

    Article  PubMed  Google Scholar 

  6. Liu P, Tarle SA, Hajra A, Claxton DF, Marlton P, Freedman M et al. Fusion between transcriptional factor CBFβ/ PEBP2β and myosin heavy chain in acute myeloid leukemia. Science 1993; 261: 1041–1044.

    Article  CAS  PubMed  Google Scholar 

  7. Meyers S, Lenny N, Hiebert SW . The t(8;21) fusion protein interferes with AML-1b-dependent transcriptional activation. Mol Cell Biol 1995; 15: 1974–1982.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hiebert SW, Sun W, Davis JN, Golub T, Shurtleff S, Buijs A et al. The t(12;21) translocation converts AML-1B from an activator to a repressor of transcription. Mol Cell Biol 1996; 16: 1349–1355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yergeau DA, Hetherington CJ, Wang Q, Zhang P, Sharpe AH, Binder M et al. Embryonic lethality and impairment of haematopoiesis in mice heterozygous for an AML1-ETO fusion gene. Nat Genet 1997; 15: 303–306.

    Article  CAS  PubMed  Google Scholar 

  10. Okuda T, Cai Z, Yang S, Lenny N, Lyu CJ, van Deursen JM et al. Expression of a knocked-in AML1-ETO leukemia gene inhibits the establishment of normal definitive hematopoiesis and directly generates dysplastic hematopoietic progenitors. Blood 1998; 91: 3134–3143.

    CAS  PubMed  Google Scholar 

  11. Rhoades KL, Hetherington CJ, Harakawa N, Yergeau DA, Zhou L, Liu LQ et al. Analysis of the role of AML1-ETO in leukemogenesis, using an inducible transgenic mouse model. Blood 2000; 96: 2108–2115.

    CAS  PubMed  Google Scholar 

  12. Castilla LH, Garrett L, Adya N, Orlic D, Dutra A, Anderson S et al. The fusion gene Cbfb-MYH11 blocks myeloid differentiation and predisposes mice to acute myelomonocytic leukaemia. Nat Genet 1999; 23: 144–146.

    Article  CAS  PubMed  Google Scholar 

  13. Yuan Y, Zhou L, Miyamoto T, Iwasaki H, Harakawa N, Hetherington CJ et al. AML1-ETO expression is directly involved in the development of acute myeloid leukemia in the presence of additional mutations. Proc Natl Acad Sci USA 2001; 98: 10398–10403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Higuchi M, O'Brien D, Kumaravelu P, Lenny N, Yeoh EJ, Downing JR . Expression of a conditional AML1-ETO oncogene bypasses embryonic lethality and establishes a murine model of human t(8;21) acute myeloid leukemia. Cancer Cell 2002; 1: 63–74.

    Article  CAS  PubMed  Google Scholar 

  15. Tenen DG . Disruption of differentiation in human cancer: AML shows the way. Nat Rev Cancer 2003; 3: 89–101.

    Article  CAS  PubMed  Google Scholar 

  16. Osato M, Asou N, Abdalla E, Hoshino K, Yamasaki H, Okubo T et al. Biallelic and heterozygous point mutations in the runt domain of the AML1/PEBP2αB gene associated with myeloblastic leukemias. Blood 1999; 93: 1817–1824.

    CAS  PubMed  Google Scholar 

  17. Preudhomme C, Warot-Loze D, Roumier C, Grardel-Duflos N, Garand R, Lai JL et al. High incidence of biallelic point mutations in the Runt domain of the AML1/PEBP2αB gene in M0 acute myeloid leukemia and in myeloid malignancies with acquired trisomy 21. Blood 2000; 96: 862–2869.

    Google Scholar 

  18. Song WJ, Sullivan MG, Legare RD, Hutchings S, Tan X, Kufrin D et al. Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukaemia. Nat Genet 1999; 23: 166–175.

    Article  CAS  PubMed  Google Scholar 

  19. Michaud J, Wu F, Osato M, Cottles GM, Yanagida M, Asou N et al. In vitro analysis of known and novel RUNX1 mutations in dominant familial platelet disorder with predisposition to acute myelogenous leukemia (FPD/AML): implications for mechanisms of pathogenesis. Blood 2002; 99: 1364–1372.

    Article  CAS  PubMed  Google Scholar 

  20. Dowton SB, Beardsley D, Jamison D, Blattner S, Li FP . Studies of a familial platelet disorder. Blood 1985; 65: 557–563.

    CAS  PubMed  Google Scholar 

  21. Osato M, Yanagida M, Shigesada K, Ito Y . Point mutations of the RUNX1/AML1 gene in sporadic and familial myeloid leukemias. Int J Hematol 2001; 74: 245–251.

    Article  CAS  PubMed  Google Scholar 

  22. Gilliland DG, Griffin JD . The roles of FLT3 in hematopoiesis and leukemia. Blood 2002; 100: 1532–1542.

    Article  CAS  PubMed  Google Scholar 

  23. Rosnet O, Schiff C, Pebusque M-J, Marchetto S, Tonnelle C, Toiron Y et al. Human FLT3/FLK2 gene: cDNA cloning and expression in hematopoietic cells. Blood 1993; 82: 1110–1119.

    CAS  PubMed  Google Scholar 

  24. Levis M, Small D . FLT3:ITDoes matter in leukemia. Leukemia 2003; 17: 220–252.

    Article  Google Scholar 

  25. Nakao M, Yokota S, Iwai T, Kaneko H, Horiike S, Kashima K et al. Internal tandem duplication of the flt3 gene found in acute myeloid leukemia. Leukemia 1996; 10: 1911–1918.

    CAS  PubMed  Google Scholar 

  26. Kiyoi H, Naoe T, Nakano Y, Yokota S, Minami S, Miyawaki S et al. Prognostic implication of FLT3 and N-RAS gene mutations in acute myeloid leukemia. Blood 1999; 93: 3074–3080.

    CAS  PubMed  Google Scholar 

  27. Yamamoto Y, Kiyoi H, Nakano Y, Suzuki R, Kodera Y, Miyawaki S et al. Activating mutation of D835 within the activation loop of FLT3 in human hematologic malignancies. Blood 2001; 97: 2434–2439.

    Article  CAS  PubMed  Google Scholar 

  28. Kottaridis PD, Gale RE, Frew ME, Harrison G, Langabeer SE, Belton AA et al. The presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials. Blood 2001; 98: 1752–1759.

    Article  CAS  PubMed  Google Scholar 

  29. Schnittger S, Schoch C, Dugas M, Kern W, Staib P, Wuchter C et al. Analysis of FLT3 length mutations in 1003 patients with acute myeloid leukemia: correlation to cytogenetics, FAB subtype, and prognosis in the AMLCG study and usefulness as a marker for the detection of minimal residual disease. Blood 2002; 100: 59–66.

    Article  CAS  PubMed  Google Scholar 

  30. Thiede C, Steudel C, Mohr B, Schaich M, Schakel U, Platzbecker U et al. Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: association with FAB subtypes and identification of subgroups with poor prognosis. Blood 2002; 99: 4326–4335.

    Article  CAS  PubMed  Google Scholar 

  31. Abu-Duhier FM, Goodeve AC, Wilson GA, Care RS, Peake IR, Reilly JT . Identification of novel FLT-3 Asp835 mutations in adult acute myeloid leukaemia. Br J Haematol 2001; 113: 983–988.

    Article  CAS  PubMed  Google Scholar 

  32. Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR et al. Proposal for the recognition of minimally differentiated acute myeloid leukaemia (AML-M0). Br J Haematol 1991; 78: 325–329.

    Article  CAS  PubMed  Google Scholar 

  33. Osato M, Asou N, Okubo T, Nishimura S, Yamasaki H, Era T et al. Myelomonoblastic leukaemia cells carrying a PEBP2β and MYH11 fusion gene are CD34+, c-KIT+ immature cells. Br J Haematol 1997; 97: 656–658.

    Article  CAS  PubMed  Google Scholar 

  34. Ohno R, Kobayashi T, Tanimoto M, Hiraoka A, Imai K, Asou N et al. Randomized study of individualized induction therapy with or without vincristine, and of maintenance-intensification therapy between 4 or 12 courses in adult acute myeloid leukemia. AML-87 study of the Japan Adult Leukemia Study Group. Cancer 1993; 71: 3888–3895.

    Article  CAS  PubMed  Google Scholar 

  35. Kobayashi T, Miyawaki S, Tanimoto M, Kuriyama K, Murakami H, Yoshida M et al. Randomized trials between behenoyl cytarabine (BHAC) and cytarabine in combination induction and consolidation therapy, and with or without ubenimex after maintenance/intensification therapy in adult acute myeloid leukemia. J Clin Oncol 1996; 14: 204–213.

    Article  CAS  PubMed  Google Scholar 

  36. Miyawaki S, Tanimoto M, Kobayashi T, Minami S, Tamura J, Omoto E et al. No beneficial effect from addition of etoposide to daunorubicin, cytarabine, and 6-mercaptopurine in individualized induction therapy of adult acute myeloid leukemia: JALSG-AML92 study. Int J Hematol 1999; 70: 97–104.

    CAS  PubMed  Google Scholar 

  37. Hoshino K, Asou N, Okubo T, Suzushima H, Kiyokawa T, Kawano F et al. The absence of the p15INK4B gene alterations in adult patients with precursor B-cell acute lymphoblastic leukaemia is a favourable prognostic factor. Br J Haematol 2002; 117: 531–540.

    Article  CAS  PubMed  Google Scholar 

  38. Miyoshi H, Ohira M, Shimizu K, Mitani K, Hirai H, Imai T et al. Alternative splicing and genomic structure of the AML1 gene involved in acute myeloid leukemia. Nucleic Acid Res 1995; 23: 2762–2769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nishimura S, Asou N, Suzushima H, Okubo T, Fujimoto T, Osato M . p53 gene mutation and loss of heterozygosity are associated with increased risk of disease progression in adult T cell leukemia. Leukemia 1995; 9: 598–604.

    CAS  PubMed  Google Scholar 

  40. Abu-Duhier FM, Goodeve AC, Wilson GA, Care RS, Peake IR, Reilly JT . Genomic structure of human FLT3: implications for mutational analysis. Br J Haematol 2001; 113: 1076–1089.

    Article  CAS  PubMed  Google Scholar 

  41. Rosnet O, Mattei MG, Marchetto S, Birnbaum D . Isolation and chromosomal localization of a novel FMS-like tyrosine kinase gene. Genomics 1991; 9: 380–385.

    Article  CAS  PubMed  Google Scholar 

  42. Langabeer SE, Gale RE, Rollinson SJ, Morgan GJ, Linch DC . Mutations of the AML1 gene in acute myeloid leukemia of FAB types M0 and M7. Genes Chromosomes Cancer 2001; 34: 24–32.

    Article  Google Scholar 

  43. Roumier C, Eclache V, Imbert M, Davi F, MacIntyre E, Garand R et al. M0 AML, clinical and biological features of the disease including AML1 gene mutations: a report of 59 cases by the Groupe Francais d'Hematologie Cellulaire (GFHC) and the Groupe Francais de Cytogenetique Hematologique (GFCH). Blood 2003; 101: 1277–1283.

    Article  CAS  PubMed  Google Scholar 

  44. Miyamoto T, Nagafuji K, Akashi K, Harada M, Kyo T, Akashi T et al. Persistence of multipotent progenitors expressing AML1/ETO transcripts in long-term remission patients with t(8;21) acute myelogenous leukemia. Blood 1996; 87: 4789–4796.

    CAS  PubMed  Google Scholar 

  45. Basecke J, Cepek L, Mannhalter C, Krauter J, Hildenhagen S, Brittinger G et al. Transcription of AML1/ETO in bone marrow and cord blood of individuals without acute myelogenous leukemia. Blood 2002; 100: 2267–2268.

    Article  CAS  PubMed  Google Scholar 

  46. Taketani T, Taki T, Takita J, Ono R, Horikoshi Y, Kaneko Y et al. Mutation of the AML1/RUNX1 gene in a transient myeloproliferative disorder patient with Down syndrome. Leukemia 2002; 16: 1866–1867.

    Article  CAS  PubMed  Google Scholar 

  47. Mueller BU, Pabst T, Osato M, Asou N, Johansen LM, Minden MD et al. Heterozygous PU.1 mutations are associated with acute myeloid leukemia. Blood 2002; 100: 998–1007.

    Article  CAS  PubMed  Google Scholar 

  48. Whitman SP, Archer KJ, Feng L, Baldus C, Becknell B, Carlson BD et al. Absence of the wild-type allele predicts poor prognosis in adult de novo acute myeloid leukemia with normal cytogenetics and the internal tandem duplication of FLT3: a cancer and leukemia group B study. Cancer Res 2001; 61: 7233–7239.

    CAS  PubMed  Google Scholar 

  49. Kelly LM, Liu Q, Kutok JL, Williams IR, Boulton CL, Gilliland DG . FLT3 internal tandem duplication mutations associated with human acute myeloid leukemias induce myeloproliferative disease in a murine bone marrow transplant model. Blood 2002; 99: 310–318.

    Article  CAS  PubMed  Google Scholar 

  50. Nakano Y, Kiyoi H, Miyawaki S, Asou N, Ohno R, Saito H et al. Molecular evolution of acute myeloid leukaemia in relapse: unstable N-ras and FLT3 genes compared with p53 gene. Br J Haematol 1999; 104: 659–664.

    Article  CAS  PubMed  Google Scholar 

  51. Asou N, Suzushima H, Hattori T, Nishikawa K, Wang JX, Okubo T et al. Acute unclassified leukemia originating from undifferentiated cells with the aberrant rearrangement and expression of immunoglobulin and T-cell receptor genes. Leukemia 1991; 5: 293–299.

    CAS  PubMed  Google Scholar 

  52. Bene MC, Bernier M, Casasnovas RO, Castoldi G, Doekharan D, van der Holt B et al. Acute myeloid leukaemia M0: haematological, immunophenotypic and cytogenetic characteristics and their prognostic significance: an analysis in 241 patients. Br J Haematol 2001; 113: 737–745.

    Article  CAS  PubMed  Google Scholar 

  53. Beghini A, Peterlongo P, Ripamonti CB, Larizza L, Cairoli R, Morra E et al. C-kit mutations in core binding factor leukemias. Blood 2000; 95: 726–727.

    CAS  PubMed  Google Scholar 

  54. Kelly LM, Kutok JL, Williams IR, Boulton CL, Amaral SM, Curley DP et al. PML/RARalpha and FLT3-ITD induce an APL-like disease in a mouse model. Proc Natl Acad Sci USA 2002; 99: 8283–8288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to Drs M Takeuchi, A Takeshita, K Kawakami, K Isogai and all contributors to this work for their kind help. We thank to Ms H Ogata for technical assistances. This work is supported in part by Grants-in-Aid for Scientific Research from the Japanese Ministry of Education, Science and Culture, Grants-in-Aid for Cancer Research from Japanese Ministry of Health and Welfare (No. 9-2).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsuno, N., Osato, M., Yamashita, N. et al. Dual mutations in the AML1 and FLT3 genes are associated with leukemogenesis in acute myeloblastic leukemia of the M0 subtype. Leukemia 17, 2492–2499 (2003). https://doi.org/10.1038/sj.leu.2403160

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403160

Keywords

This article is cited by

Search

Quick links