Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Treatment by design in leukemia, a meeting report, Philadelphia, Pennsylvania, December 2002

Abstract

Novel approaches have been designed to treat leukemia based on our understanding of the genetic and biochemical lesions present in different malignancies. This meeting report summarizes some of the recent advances in leukemia treatment. Based on the discoveries of cellular oncogenes, chromosomal translocations, monoclonal antibodies, multidrug resistance pumps, signal transduction pathways, genomics/proteonomic approaches to clinical diagnosis and mutations in biochemical pathways, clinicians and basic scientists have been able to identify the particular genetic mutations and signal transduction pathways involved as well as design more appropriate treatments for the leukemia patient. This meeting report discusses these exciting new therapies and the results obtained from ongoing clinical trials. Furthermore, rational approaches to treat complications of tumor lysis syndrome by administration of the recombinant urate oxidase protein, also known as rasburicase, which corrects the biochemical defect present in humans, were discussed. Clearly, over the past 25 years, molecular biology and biotechnology has provided the hematologist/oncologist novel bullets in their arsenal that will allow treatment by design in leukemia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Cho KR, Vogelstein B . Genetic alterations in the adenoma – carcinoma sequence. Cancer 1992; 70 (6 Suppl): 1727–1731.

    Article  CAS  PubMed  Google Scholar 

  2. Fearon ER, Vogelstein B . A genetic model for colorectal tumorigenesis. Cell 1990; 61: 759–767.

    Article  CAS  PubMed  Google Scholar 

  3. Hanahan D, Weinberg RA . The hallmarks of cancer. Cell 2000; 100: 57–70.

    Article  CAS  PubMed  Google Scholar 

  4. Land H, Parada LF, Weinberg RA . Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature 1983; 304: 596–602.

    Article  CAS  PubMed  Google Scholar 

  5. Hahn WC, Counter CM, Lundberg AS, Beijersbergen RL, Brooks MW, Weinberg RA . Creation of human tumour cells with defined genetic elements. Nature 1999; 400: 464–468.

    Article  CAS  PubMed  Google Scholar 

  6. Deininger MWN, Goldman JM, Melo JV . The molecular biology of chronic myeloid leukemia. Blood 2000; 96: 3343–3356.

    CAS  PubMed  Google Scholar 

  7. Ben-Neriah Y, Daley GQ, Mes-Masson AM, Witte ON, Baltimore D . The chronic myelogenous leukemia-specific P210 protein is the product of the bcr/abl hybrid gene. Science 1986; 233: 212–214.

    Article  CAS  PubMed  Google Scholar 

  8. Daley GQ, Van Etten RA, Baltimore D . Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. Science 1990; 247: 824–830.

    Article  CAS  PubMed  Google Scholar 

  9. Pear WS, Miller JP, Xu L, Pui JC, Soffer B, Quackenbush RC et al. Efficient and rapid induction of a chronic myelogenous leukemia-like myeloproliferative disease in mice receiving P210 bcr/abl-transduced bone marrow. Blood 1998; 92: 3780–3792.

    CAS  PubMed  Google Scholar 

  10. Li S, Ilaria Jr RL, Million RP, Daley GQ, Van Etten RA . The P190, P210, and P230 forms of the BCR/ABL oncogene induce a similar chronic myeloid leukemia-like syndrome in mice but have different lymphoid leukemogenic activity. J Exp Med 1999; 189: 1399–1412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Look AT . Oncogenic transcription factors in the human acute leukemias. Science 1997; 278: 1059–1064.

    Article  CAS  PubMed  Google Scholar 

  12. Azam M, Latek RR, Daley GQ . Mechanisms of autoinhibition and STI-571/imatinib resistance revealed by mutagenesis of BCR-ABL. Cell 2003; 112: 831–843.

    Article  CAS  PubMed  Google Scholar 

  13. Nagar B, Hantschel O, Young MA, Scheffzek K, Veach D, Bornmann W et al. Structural basis for the autoinhibition of c-Abl tyrosine kinase. Cell 2003; 112: 859–871.

    Article  CAS  PubMed  Google Scholar 

  14. O'Brien SG, Guilhot F, Larson RA, Gathmann I, Baccarani M, Cervantes F et al. Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med 2003; 348: 999–1004.

    Google Scholar 

  15. Deguchi K, Gilliland DG . Cooperativity between mutations in tyrosine kinases and in hematopoietic transcription factors in AML. Leukemia 2002; 16: 740–744.

    Article  CAS  PubMed  Google Scholar 

  16. Dash AB, Williams IR, Kutok JL, Tomasson MH, Anastasiadou E, Lindahl K et al. A murine model of CML blast crisis induced by cooperation between BCR/ABL and NUP98/HOXA9. Proc Natl Acad Sci USA 2002; 99: 7622–7627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shah NP, Nicoll JM, Nagar B, Gorre ME, Paquette RL, Kuriyan J et al. Multiple BCR-ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crisis chronic myeloid leukemia. Cancer Cell 2002; 2: 117–125.

    Article  CAS  PubMed  Google Scholar 

  18. Kakizuka A, Miller Jr WH, Umesono K, Warrell Jr RP, Frankel SR, Murty VV et al. Chromosomal translocation t(15;17) in human acute promyelocytic leukemia fuses RAR alpha with a novel putative transcription factor, PML. Cell 1991; 66: 663–674.

    Article  CAS  PubMed  Google Scholar 

  19. de The H, Lavau C, Marchio A, Chomienne C, Degos L, Dejean A . The PML-RAR alpha fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR. Cell 1991; 66: 675–684.

    Article  CAS  PubMed  Google Scholar 

  20. Goddard AD, Borrow J, Freemont PS, Solomon E . Characterization of a zinc finger gene disrupted by the t(15;17) in acute promyelocytic leukemia. Science 1991; 254: 1371–1374.

    Article  CAS  PubMed  Google Scholar 

  21. Pandolfi PP . Oncogenes and tumor suppressors in the molecular pathogenesis of acute promyelocytic leukemia. Hum Mol Genet 2001; 10: 769–775.

    Article  CAS  PubMed  Google Scholar 

  22. Fenrick R, Hiebert SW . Role of histone deacetylases in acute leukemia. J Cell Biochem Suppl 1998; 30-31: 194–202.

    Article  CAS  PubMed  Google Scholar 

  23. Lin RJ, Nagy L, Inoue S, Shao W, Miller Jr WH, Evans RM . Role of the histone deacetylase complex in acute promyelocytic leukaemia. Nature 1998; 391: 811–814.

    Article  CAS  PubMed  Google Scholar 

  24. Grignani F, De Matteis S, Nervi C, Tomassoni L, Gelmetti V, Cioce M et al. Fusion proteins of the retinoic acid receptor-α recruit histone deacetylase in promyelocytic leukaemia. Nature 1998; 391: 815–818.

    Article  CAS  PubMed  Google Scholar 

  25. Chen A, Licht JD, Wu Y, Hellinger N, Scher W, Waxman S . Retinoic acid is required for and potentiates differentiation of acute promyelocytic leukemia cells by nonretinoid agents. Blood 1994; 84: 2122–2129.

    CAS  PubMed  Google Scholar 

  26. Lin RJ, Sternsdorf T, Tini M, Evans RM . Transcriptional regulation in acute promyelocytic leukemia. Oncogene 2001; 20: 7204–7215.

    Article  CAS  PubMed  Google Scholar 

  27. Collins SJ . The role of retinoids and retinoic acid receptors in normal hematopoiesis. Leukemia 2002; 16: 1896–1905.

    Article  CAS  PubMed  Google Scholar 

  28. Lin RJ, Sternsdorf T, Tini M, Evans RM . Transcriptional regulation in acute promyelocytic leukemia. Oncogene 2001; 20: 7204–7215.

    Article  CAS  PubMed  Google Scholar 

  29. Doucas V, Brockes JP, Yaniv M, de The H, Dejean A . The PML-retinoic acid receptor α translocation converts the receptor from an inhibitor to a retinoic acid-dependent activator of transcription factor AP-1. Proc Natl Acad Sci USA 1993; 90: 9345–9349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Minucci S, Nervi C, Lo Coco F, Pelicci PG . Histone deacetylases: a common molecular target for differentiation treatment of acute myeloid leukemias? Oncogene 2001; 20: 3110–3115.

    Article  CAS  PubMed  Google Scholar 

  31. Melnick A, Licht JD . Histone deacetylases as therapeutic targets in hematologic malignancies. Curr Opin Hematol 2002; 9: 322–332.

    Article  PubMed  Google Scholar 

  32. Johnstone RW . Histone-deacetylase inhibitors: novel drugs for the treatment of cancer. Nat Rev Drug Discov 2002; 1: 287–299.

    Article  CAS  PubMed  Google Scholar 

  33. Kelly WK, O'Connor OA, Marks PA . Histone deacetylase inhibitors: from target to clinical trials. Expert Opin Invest Drugs 2002; 11: 1695–1713.

    Article  CAS  Google Scholar 

  34. Gilliland DG, Griffin JD . The roles of FLT3 in hematopoiesis and leukemia. Blood 2002; 100: 1532–1542.

    Article  CAS  PubMed  Google Scholar 

  35. Kiyoi H, Ohno R, Ueda R, Saito H, Naoe T . Mechanism of constitutive activation of FLT3 with internal tandem duplication in the juxtamembrane domain. Oncogene 2002; 21: 2555–2563.

    Article  CAS  PubMed  Google Scholar 

  36. Hayakawa F, Towatari M, Kiyoi H, Tanimoto M, Kitamura T, Saito H et al. Tandem-duplicated Flt3 constitutively activates STAT5 and MAP kinase and introduces autonomous cell growth in IL-3-dependent cell lines. Oncogene 2000; 19: 624–631.

    Article  CAS  PubMed  Google Scholar 

  37. Kiyoi H, Towatari M, Yokota S, Hamaguchi M, Ohno R, Saito H et al. Internal tandem duplication of the FLT3 gene is a novel modality of elongation mutation which causes constitutive activation of the product. Leukemia 1998; 12: 1333–1337.

    Article  CAS  PubMed  Google Scholar 

  38. Yokota S, Kiyoi H, Nakao M, Iwai T, Misawa S, Okuda T et al. Internal tandem duplication of the FLT3 gene is preferentially seen in acute myeloid leukemia and myelodysplastic syndrome among various hematological malignancies. A study on a large series of patients and cell lines. Leukemia 1997; 11: 1605–1609.

    Article  CAS  PubMed  Google Scholar 

  39. Yamamoto Y, Kiyoi H, Nakano Y, Suzuki R, Kodera Y, Miyawaki S et al. Activating mutation of D835 within the activation loop of FLT3 in human hematologic malignancies. Blood 2001; 97: 2434–2439.

    Article  CAS  PubMed  Google Scholar 

  40. Tse KF, Novelli E, Civin CI, Bohmer FD, Small D . Inhibition of FLT3-mediated transformation by use of a tyrosine kinase inhibitor. Leukemia 2001; 15: 1001–1010.

    Article  CAS  PubMed  Google Scholar 

  41. Levis M, Tse K-F, Smith BD, Garrett E, Small D . A FLT3 tyrosine kinase inhibitor is selectively cytotoxic to acute myeloid leukemia blasts harboring FLT3 internal tandem duplication mutations. Blood 2001; 98: 885–887.

    Article  CAS  PubMed  Google Scholar 

  42. Shannon K . The Ras signaling pathway and the molecular basis of myeloid leukemogenesis. Curr Opin Hematol 1995; 2: 305–308.

    Article  CAS  PubMed  Google Scholar 

  43. Largaespada DA . Genetic heterogeneity in acute myeloid leukemia: maximizing information flow from MuLV mutagenesis studies. Leukemia 2000; 14: 1174–1184.

    Article  CAS  PubMed  Google Scholar 

  44. Pérez-Sala D, Rebollo A . Novel aspects of Ras proteins biology: regulation and implications. Cell Death Differ 1999; 6: 722–728.

    Article  CAS  PubMed  Google Scholar 

  45. Adjei AA . Blocking oncogenic Ras signaling for cancer therapy. J Natl Cancer Inst 2001; 93: 1062–1074.

    Article  CAS  PubMed  Google Scholar 

  46. Le DT, Shannon KM . Ras processing as a therapeutic target in hematologic malignancies. Curr Opin Hematol 2002; 9: 308–315.

    Article  PubMed  Google Scholar 

  47. Chang F, Steelman LS, Lee JT, Shelton JG, Navolanic PM, Blalock WL et al. Signal transduction mediated by the Ras/Raf/MEK/ERK pathway from cytokine receptors to transcription factors: potential targeting for therapeutic intervention. Leukemia 2003; 17: 1263–1293.

    Article  CAS  PubMed  Google Scholar 

  48. Peters DG, Hoover RR, Gerlach MJ, Koh EY, Zhang H, Choe K et al. Activity of the farnesyl protein transferase inhibitor SCH66336 against BCR/ABL-induced murine leukemia and primary cells from patients with chronic myeloid leukemia. Blood 2001; 97: 1404–1412.

    Article  CAS  PubMed  Google Scholar 

  49. Reichert A, Heisterkamp N, Daley GQ, Groffen J . Treatment of Bcr/Abl-positive acute lymphoblastic leukemia in P190 transgenic mice with the farnesyl transferase inhibitor SCH66336. Blood 2001; 97: 1399–1403.

    Article  CAS  PubMed  Google Scholar 

  50. Hoover RR, Mahon FX, Melo JV, Daley GQ . Overcoming STI571 resistance with the farnesyl transferase inhibitor SCH66336. Blood 2002; 100: 1068–1071.

    Article  CAS  PubMed  Google Scholar 

  51. Lebowitz PF, Prendergast GC . Non-Ras targets of farnesyltransferase inhibitors: focus on Rho. Oncogene 1998; 17: 1439–1445.

    Article  CAS  PubMed  Google Scholar 

  52. Du W, Lebowitz PF, Prendergast GC . Cell growth inhibition by farnesyltransferase inhibitors is mediated by gain of geranylgeranylated RhoB. Mol Cell Biol 1999; 19: 1831–1840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Law BK, Nørgaard P, Gnudi L, Kahn BB, Poulson HS, Moses HL . Inhibition of DNA synthesis by a farnesyltransferase inhibitor involves inhibition of the p70S6k pathway. J Biol Chem 1999; 274: 4743–4748.

    Article  CAS  PubMed  Google Scholar 

  54. Sepp-Lorenzino L, Rosen N . A farnesyl-protein transferase inhibitor induces p21 expression and G1 block in p53 wild type tumor cells. J Biol Chem 1998; 273: 20243–20251.

    Article  CAS  PubMed  Google Scholar 

  55. Karp JE, Lancet JE, Kaufmann SH, End DW, Wright JJ, Bol K et al. Clinical and biologic activity of the farnesyltransferase inhibitor R115777 in adults with refractory and relapsed acute leukemias: a phase 1 clinical–laboratory correlative trial. Blood 2001; 97: 3361–3369.

    Article  CAS  PubMed  Google Scholar 

  56. Fialkow PJ, Martin PJ, Najfeld V, Penfold GK, Jacobson RJ, Hansen JA . Evidence for a multistep pathogenesis of chronic myelogenous leukemia. Blood 1981; 58: 158–163.

    CAS  PubMed  Google Scholar 

  57. Padua RA, McGlynn A, McGlynn H . Molecular, cytogenetic and genetic abnormalities in MDS and secondary AML. Cancer Treat Res 2001; 108: 111–157.

    Article  CAS  PubMed  Google Scholar 

  58. Gojo I, Karp JE . The impact of biology on the treatment of secondary AML. Cancer Treat Res 2001; 108: 231–255.

    Article  CAS  PubMed  Google Scholar 

  59. Kaizer H, Stuart RK, Brookmeyer R, Beschorner WE, Braine HG, Burns WH et al. Autologous bone marrow transplantation in acute leukemia: a phase I study of in vitro treatment of marrow with 4-hydroperoxycyclophosphamide to purge tumor cells. Blood 1985; 65: 1504–1510.

    CAS  PubMed  Google Scholar 

  60. Borges-Walmsley MI, Walmsley AR . The structure and function of drug pumps. Trends Microbiol 2001; 9: 71–79.

    Article  CAS  PubMed  Google Scholar 

  61. Ban T . Pleiotropic, multidrug-resistant phenotype and P-glycoprotein: a review. Chemotherapy 1992; 38: 191–196.

    Article  CAS  PubMed  Google Scholar 

  62. Karp JE . MDR modulation in acute myelogenous leukemia: is it dead? Leukemia 2001; 15: 666–667.

    Article  CAS  PubMed  Google Scholar 

  63. Leith CP, Chen IM, Kopecky KJ, Appelbaum FR, Head DR, Godwin JE et al. Correlation of multidrug resistance (MDR1) protein expression with functional dye/drug efflux in acute myeloid leukemia by multiparameter flow cytometry: identification of discordant MDR/efflux+ and MDR1+/efflux cases. Blood 1995; 86: 2329–2342.

    CAS  PubMed  Google Scholar 

  64. Borg AG, Burgess R, Green LM, Scheper RJ, Liu Yin JA . Overexpression of lung-resistance protein and increased P-glycoprotein function in acute myeloid leukaemia cells predict a poor response to chemotherapy and reduced patient survival. Br J Haematol 1998; 103: 1083–1091.

    Article  CAS  PubMed  Google Scholar 

  65. van den Heuvel-Eibrink MM, Sonneveld P, Pieters R . The prognostic significance of membrane transport-associated multidrug resistance (MDR) proteins in leukemia. Int J Clin Pharmacol Ther 2000; 38: 94–110.

    Article  CAS  PubMed  Google Scholar 

  66. Marie J-P . Drug resistance in hematologic malignancies. Curr Opin Oncol 2001; 13: 463–469.

    Article  CAS  PubMed  Google Scholar 

  67. Covelli A . Modulation of multidrug resistance (MDR) in hematological malignancies. Ann Oncol 1999; 10 (Suppl 6): 53–59.

    Article  PubMed  Google Scholar 

  68. Blair A, Hogge DE, Sutherland HJ . Most acute myeloid leukemia progenitor cells with long-term proliferative ability in vitro and in vivo have the phenotype CD34+/CD71/HLA-DR. Blood 1998; 92: 4325–4335.

    CAS  PubMed  Google Scholar 

  69. Beck WT, Grogan TM, Willman CL, Cordon-Cardo C, Parham DM, Kuttesch JF et al. Methods to detect P-glycoprotein-associated multidrug resistance in patients' tumors: consensus recommendations. Cancer Res 1996; 56: 3010–3020.

    CAS  PubMed  Google Scholar 

  70. Lee EJ, George SL, Caligiuri M, Szatrowski TP, Powell BL, Lemke S et al. Parallel phase I studies of daunorubicin given with cytarabine and etoposide with or without the multidrug resistance modulator PSC-833 in previously untreated patients 60 years of age or older with acute myeloid leukemia: results of cancer and leukemia group B study 9420. J Clin Oncol 1999; 17: 2831–2839.

    Article  CAS  PubMed  Google Scholar 

  71. Baer MR, George SL, Dodge RK, O'Loughlin KL, Minderman H, Caligiuri MA et al. Phase 3 study of the multidrug resistance modulator PSC-833 in previously untreated patients 60 years of age and older with acute myeloid leukemia: Cancer and Leukemia Group B Study 9720. Blood 2002; 100: 1224–1232.

    CAS  PubMed  Google Scholar 

  72. Advani R, Saba HI, Tallman MS, Rowe JM, Wiernik PH, Ramek J et al. Treatment of refractory and relapsed acute myelogenous leukemia with combination chemotherapy plus the multidrug resistance modulator PSC 833 (Valspodar). Blood 1999; 93: 787–795.

    CAS  PubMed  Google Scholar 

  73. List AF, Kopecky KJ, Willman CL, Head DR, Persons DL, Slovak ML et al. Benefit of cyclosporine modulation of drug resistance in patients with poor-risk acute myeloid leukemia: a Southwest Oncology Group study. Blood 2001; 98: 3212–3220.

    Article  CAS  PubMed  Google Scholar 

  74. Shepard RL, Cao J, Starling JJ, Dantzig AH . Modulation of P-glycoprotein but not MRP1- or BCRP-mediated drug resistance by LY335979. Int J Cancer 2003; 103: 121–125.

    Article  CAS  PubMed  Google Scholar 

  75. Rubin EH, de Alwis DP, Pouliquen I, Green L, Marder P, Lin Y et al. A phase I trial of a potent P-glycoprotein inhibitor, Zosuquidar.3HCl trihydrochloride (LY335979), administered orally in combination with doxorubicin in patients with advanced malignancies. Clin Cancer Res 2002; 8: 3710–3717.

    CAS  PubMed  Google Scholar 

  76. Rowinsky EK, Smith L, Wang YM, Chaturvedi P, Villalona M, Campbell E et al. Phase I and pharmacokinetic study of paclitaxel in combination with biricodar, a novel agent that reverses multidrug resistance conferred by overexpression of both MDR1 and MRP. J Clin Oncol 1998; 16: 2964–2976.

    Article  CAS  PubMed  Google Scholar 

  77. Peck RA, Hewett J, Harding MW, Wang YM, Chaturvedi PR, Bhatnagar A et al. Phase I and pharmacokinetic study of the novel MDR1 and MRP1 inhibitor biricodar administered alone and in combination with doxorubicin. J Clin Oncol 2001; 19: 3130–3141.

    Article  CAS  PubMed  Google Scholar 

  78. Stewart A, Steiner J, Mellows G, Laguda B, Norris D, Bevan P . Phase I trial of XR9576 in healthy volunteers demonstrates modulation of P-glycoprotein in CD56+ lymphocytes after oral and intravenous administration. Clin Cancer Res 2000; 6: 4186–4191.

    CAS  PubMed  Google Scholar 

  79. Mistry P, Stewart AJ, Dangerfield W, Okiji S, Liddle C, Bootle D et al. In vitro and in vivo reversal of P-glycoprotein-mediated multidrug resistance by a novel potent modulator, XR9576. Cancer Res 2001; 61: 749–758.

    CAS  PubMed  Google Scholar 

  80. van Zuylen L, Sparreboom A, van der Gaast A, Nooter K, Eskens FALM, Brouwer E et al. Disposition of docetaxel in the presence of P-glycoprotein inhibition by intravenous administration of R101933. Eur J Cancer 2002; 38: 1090–1099.

    Article  CAS  PubMed  Google Scholar 

  81. Javed A, Guo B, Hiebert S, Choi JY, Green J, Zhao SC et al. Groucho/TLE/R-esp proteins associate with the nuclear matrix and repress RUNX (CBF(alpha)/AML/PEBP2(alpha)) dependent activation of tissue-specific gene transcription. J Cell Sci 2000; 113: 2221–2231.

    CAS  PubMed  Google Scholar 

  82. Lutterbach B, Sun D, Schuetz J, Hiebert SW . The MYND motif is required for repression of basal transcription from the multidrug resistance 1 promoter by the t(8;21) fusion protein. Mol Cell Biol 1998; 18: 3604–3611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Dyer MJS, Oscier DG . The configuration of the immunoglobulin genes in B cell chronic lymphocytic leukemia. Leukemia 2002; 16: 973–984.

    Article  CAS  PubMed  Google Scholar 

  84. Grever MR, Kopecky KJ, Coltman CA, Files JC, Greenberg BR, Hutton JJ et al. Fludarabine monophosphate: a potentially useful agent in chronic lymphocytic leukemia. Nouv Rev Fr Hematol 1988; 30: 457–459.

    CAS  PubMed  Google Scholar 

  85. Keating MJ, Kantarjian H, O'Brien S, Koller C, Talpaz M, Schachner J et al. Fludarabine: a new agent with marked cytoreductive activity in untreated chronic lymphocytic leukemia. J Clin Oncol 1991; 9: 44–49.

    Article  CAS  PubMed  Google Scholar 

  86. Rai KR, Peterson BL, Appelbaum FR, Kolitz J, Elias L, Shepherd L et al. Fludarabine compared with chlorambucil as primary therapy for chronic lymphocytic leukemia. N Engl J Med 2000; 343: 1750–1757.

    Article  CAS  PubMed  Google Scholar 

  87. Rai KR, Sawitsky A, Cronkite EP, Chanana AD, Levy RN, Pasternack BS . Clinical staging of chronic lymphocytic leukemia. Blood 1975; 46: 219–234.

    CAS  PubMed  Google Scholar 

  88. Binet JL, Auquier A, Dighiero G, Chastang C, Piguet H, Goasguen J et al. A new prognostic classification of chronic lymphocytic leukemia derived from a multivariate survival analysis. Cancer 1981; 48: 198–206.

    Article  CAS  PubMed  Google Scholar 

  89. Rai KR . Chronic lymphocytic leukaemia. Current strategy and new perspectives of treatment. Haematologica 1999; 84 (Suppl EHA-4): 94–95.

    PubMed  Google Scholar 

  90. Stilgenbauer S, Bullinger L, Lichter P, Döhner H, for the German CLL Study Group (GCLLSG). Genetics of chronic lymphocytic leukemia: genomic aberrations and V Hgene mutation status in pathogenesis and clinical course. Leukemia 2002; 16: 993–1007.

    Article  CAS  PubMed  Google Scholar 

  91. Dreger P, Brand R, Hansz J, Milligan D, Corradini P, Finke J et al. Treatment-related mortality and graft-versus-leukemia activity after allogeneic stem cell transplantation for chronic lymphocytic leukemia using intensity-reduced conditioning. Leukemia 2003; 17: 841–848.

    Article  CAS  PubMed  Google Scholar 

  92. Stilgenbauer S, Lichter P, Döhner H . Genetic features of B-cell chronic lymphocytic leukemia. Rev Clin Exp Hematol 2000; 4: 48–72.

    Article  CAS  PubMed  Google Scholar 

  93. Karnolsky IN . Cytogenetic abnormalities in chronic lymphocytic leukemia. Folia Med (Plovdiv) 2000; 42: 5–10.

    CAS  Google Scholar 

  94. Döhner H, Stilgenbauer S, Döhner K, Bentz M, Lichter P . Chromosome aberrations in B-cell chronic lymphocytic leukemia: reassessment based on molecular cytogenetic analysis. J Mol Med 1999; 77: 266–281.

    Article  PubMed  Google Scholar 

  95. Dearden C . Monoclonal antibody therapy of haematological malignancies. BioDrugs 2002; 16: 283–301.

    Article  CAS  PubMed  Google Scholar 

  96. Cheson BD . Hematologic malignancies: new developments and future treatments. Semin Oncol 2002; 29 (4 Suppl 13): 33–45.

    Article  PubMed  Google Scholar 

  97. Montserrat E . Rituximab in chronic lymphocytic leukemia. Semin Oncol 2003; 30 (1 Suppl 2): 34–39.

    Article  CAS  PubMed  Google Scholar 

  98. O'Brien SM, Kantarjian H, Thomas DA, Giles FJ, Freireich EJ, Cortes J et al. Rituximab dose-escalation trial in chronic lymphocytic leukemia. J Clin Oncol 2001; 19: 2165–2170.

    Article  CAS  PubMed  Google Scholar 

  99. Byrd JC, Murphy T, Howard RS, Lucas MS, Goodrich A, Park K et al. Rituximab using a thrice weekly dosing schedule in B-cell chronic lymphocytic leukemia and small lymphocytic lymphoma demonstrates clinical activity and acceptable toxicity. J Clin Oncol 2001; 19: 2153–2164.

    Article  CAS  PubMed  Google Scholar 

  100. Ravetch JV, Bolland S . IgG Fc receptors. Annu Rev Immunol 2001; 19: 275–290.

    Article  CAS  PubMed  Google Scholar 

  101. Cooper MA, Fehniger TA, Caligiuri MA . The biology of human natural killer-cell subsets. Trends Immunol 2001; 22: 633–640.

    Article  CAS  PubMed  Google Scholar 

  102. Clynes R, Takechi Y, Moroi Y, Houghton A, Ravetch JV . Fc receptors are required in passive and active immunity to melanoma. Proc Natl Acad Sci USA 1998; 95: 652–656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Porcu P, Caligiuri MA . Cytokine–antibody combinations in the therapy of lymphoma. Biol Ther Lymphoma 2002; 5: 8–11.

    Google Scholar 

  104. Dancescu M, Rubio-Trujillo M, Biron G, Bron D, Delespesse G, Sarfati M . Interleukin 4 protects chronic lymphocytic leukemic B cells from death by apoptosis and upregulates Bcl-2 expression. J Exp Med 1992; 176: 1319–1326.

    Article  CAS  PubMed  Google Scholar 

  105. Foa R, Massaia M, Cardona S, Tos AG, Bianchi A, Attisano C et al. Production of tumor necrosis factor-alpha by B-cell chronic lymphocytic leukemia cells: a possible regulatory role of TNF in the progression of the disease. Blood 1990; 76: 393–400.

    CAS  PubMed  Google Scholar 

  106. Podhorecka M, Dmoszynska A, Rolinski J, Wasik E . T type 1/type 2 subsets balance in B-cell chronic lymphocytic leukemia – the three-color flow cytometry analysis. Leuk Res 2002; 26: 657–660.

    Article  CAS  PubMed  Google Scholar 

  107. Vervoordeldonk SF, Merle PA, van Leeuwen EF, van der Schoot CE, von dem Borne AEGK, Slaper-Cortenbach ICM . Fcγ receptor II (CD32) on malignant B cells influences modulation induced by anti-CD19 monoclonal antibody. Blood 1994; 83: 1632–1639.

    CAS  PubMed  Google Scholar 

  108. Bannerji R, Kitada S, Flinn IW, Pearson M, Young D, Reed JC et al. Apoptotic-regulatory and complement-protecting protein expression in chronic lymphocytic leukemia: relationship to in vivo rituximab resistance. J Clin Oncol 2003; 21: 1466–1471.

    Article  CAS  PubMed  Google Scholar 

  109. Byrd JC, Kitada S, Flinn IW, Aron JL, Pearson M, Lucas D et al. The mechanism of tumor cell clearance by rituximab in vivo in patients with B-cell chronic lymphocytic leukemia: evidence of caspase activation and apoptosis induction. Blood 2002; 99: 1038–1043.

    Article  CAS  PubMed  Google Scholar 

  110. Byrd JC, Peterson BL, Morrison VA, Park K, Jacobson R, Hoke E et al. Randomized phase 2 study of fludarabine with concurrent versus sequential treatment with rituximab in symptomatic, untreated patients with B-cell chronic lymphocytic leukemia: results from Cancer and Leukemia Group B 9712 (CALGB 9712). Blood 2003; 101: 6–14.

    Article  CAS  PubMed  Google Scholar 

  111. Reed JC, Kitada S, Kim Y, Byrd J . Modulating apoptosis pathways in low-grade B-cell malignancies using biological response modifiers. Semin Oncol 2002; 29: 10–24.

    Article  CAS  PubMed  Google Scholar 

  112. Keating M, Hallek M . Alemtuzumab, the first monoclonal antibody (MAb) directed against CD52. Med Oncol 2002; 19 (Suppl): S1–S2.

    Article  PubMed  Google Scholar 

  113. Domagała A, Kurpisz M . CD52 antigen: a review. Med Sci Monit 2001; 7: 325–331.

    PubMed  Google Scholar 

  114. Rai KR, Freter CE, Mercier RJ, Cooper MR, Mitchell BS, Stadtmauer EA et al. Alemtuzumab in previously treated chronic lymphocytic leukemia patients who also had received fludarabine. J Clin Oncol 2002; 20: 3891–3897.

    Article  CAS  PubMed  Google Scholar 

  115. Keating MJ, Flinn I, Jain V, Binet J-L, Hillmen P, Byrd J et al. Therapeutic role of alemtuzumab (Campath-1H) in patients who have failed fludarabine: results of a large international study. Blood 2002; 99: 3554–3561.

    Article  CAS  PubMed  Google Scholar 

  116. Kennedy B, Rawstron A, Carter C, Ryan M, Speed K, Lucas G et al. Campath-1H and fludarabine in combination are highly active in refractory chronic lymphocytic leukemia. Blood 2002; 99: 2245–2247.

    Article  CAS  PubMed  Google Scholar 

  117. Mavromatis B, Cheson BD . Monoclonal antibody therapy of chronic lymphocytic leukemia. J Clin Oncol 2003; 21: 1874–1881.

    Article  CAS  PubMed  Google Scholar 

  118. Shi JD, Bullock C, Hall WC, Wescott V, Wang H, Levitt DJ et al. In vivo pharmacodynamic effects of Hu1D10 (remitogen), a humanized antibody reactive against a polymorphic determinant of HLA-DR expressed on B cells. Leukemia Lymphoma 2002; 43: 1303–1312.

    Article  CAS  PubMed  Google Scholar 

  119. Stockmeyer B, Schiller M, Repp R, Lorenz H-M, Kalden JR, Gramatzki M et al. Enhanced killing of B lymphoma cells by granulocyte colony-stimulating factor-primed effector cells and Hu1D10 – a humanized human leucocyte antigen DR antibody. Br J Haematol 2002; 118: 959–967.

    Article  CAS  PubMed  Google Scholar 

  120. Pui C-H, Campana D, Evans WE . Childhood acute lymphoblastic leukaemia – current status and future perspectives. Lancet Oncol 2001; 2: 597–607.

    Article  CAS  PubMed  Google Scholar 

  121. Pui C-H, Relling MV, Downing JR . Acute lymphoblastic leukemia. N Engl J Med (in press).

  122. Ferrando AA, Neuberg DS, Staunton J, Loh ML, Huard C, Raimondi SC et al. Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. Cancer Cell 2002; 1: 75–87.

    Article  CAS  PubMed  Google Scholar 

  123. Pui C-H, Evans WE . Acute lymphoblastic leukemia. N Engl J Med 1998; 339: 605–615.

    Article  CAS  PubMed  Google Scholar 

  124. Aricò M, Valsecchi MG, Camitta B, Schrappe M, Chessells J, Baruchel A et al. Outcome of treatment in children with Philadelphia chromosome-positive acute lymphoblastic leukemia. N Engl J Med 2000; 342: 998–1006.

    Article  PubMed  Google Scholar 

  125. Pui C-H, Gaynon PS, Boyett JM, Chessells JM, Baruchel A, Kamps W et al. Outcome of treatment in childhood acute lymphoblastic leukaemia with rearrangements of the 11q23 chromosomal region. Lancet 2002; 359: 1909–1915.

    Article  PubMed  Google Scholar 

  126. Pui C-H, Chessells JM, Camitta B, Baruchel A, Biondi A, Boyett JM et al. Clinical heterogeneity in childhood acute lymphoblastic leukemia with 11q23 rearrangements. Leukemia 2003; 17: 700–706.

    Article  CAS  PubMed  Google Scholar 

  127. Yeoh EJ, Ross ME, Shurtleff SA, Williams WK, Patel D, Mahfouz R et al. Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 2002; 1: 133–143.

    Article  CAS  PubMed  Google Scholar 

  128. Armstrong SA, Staunton JE, Silverman LB, Pieters R, den Boer ML, Minden MD et al. MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat Genet 2002; 30: 41–47.

    Article  CAS  PubMed  Google Scholar 

  129. Armstrong SA, Kung AL, Mabon ME, Silverman LB, Stam RW, Den Boer ML et al. Inhibition of FLT3 in MLL. Validation of a therapeutic target identified by gene expression based classification. Cancer Cell 2003; 3: 173–183.

    Article  CAS  PubMed  Google Scholar 

  130. Cheok MH, Yang W, Pui C-H, Downing JR, Cheng C, Naeve CW et al. Treatment-specific changes in gene expression discriminate in vivo drug response in human leukemia cells. Nat Genet 2003; 34: 85–90.

    Article  CAS  PubMed  Google Scholar 

  131. Pui C-H, Relling MV, Evans WE . Role of pharmacogenomics and pharmacodynamics in the treatment of acute lymphoblastic leukaemia. Best Pract Res Clin Haematol 2002; 15: 741–756.

    Article  CAS  PubMed  Google Scholar 

  132. Relling MV, Hancock ML, Rivera GK, Sandlund JT, Ribeiro RC, Krynetski EY et al. Mercaptopurine therapy intolerance and heterozygosity at the thiopurine S-methyltransferase gene locus. J Natl Cancer Inst 1999; 91: 2001–2008.

    Article  CAS  PubMed  Google Scholar 

  133. Relling MV, Hancock ML, Boyett JM, Pui C-H, Evans WE . Prognostic importance of 6-mercaptopurine dose intensity in acute lymphoblastic leukemia. Blood 1999; 93: 2817–2823.

    CAS  PubMed  Google Scholar 

  134. Pui C-H, Relling MV . Topoisomerase II inhibitor-related acute myeloid leukaemia. Br J Haematol 2000; 109: 13–23.

    Article  CAS  PubMed  Google Scholar 

  135. Relling MV, Rubnitz JE, Rivera GK, Boyett JM, Hancock ML, Felix CA et al. High incidence of secondary brain tumors after radiotherapy and antimetabolites. Lancet 1999; 354: 34–39.

    Article  CAS  PubMed  Google Scholar 

  136. Thomsen JB, Schrøder H, Kristinsson J, Madsen B, Szumlanski C, Weinshilboum R et al. Possible carcinogenic effect of 6-mercaptopurine on bone marrow stem cells: relation to thiopurine metabolism. Cancer 1999; 86: 1080–1086.

    Article  CAS  Google Scholar 

  137. Krajinovic M, Costea I, Chiasson S . Polymorphism of the thymidylate synthase gene and outcome of acute lymphoblastic leukaemia. Lancet 2002; 359: 1033–1034.

    Article  CAS  PubMed  Google Scholar 

  138. Urano W, Taniguchi A, Yamanaka H, Tanaka E, Nakajima H, Matsuda Y et al. Polymorphisms in the methylenetetrahydrofolate reductase gene were associated with both the efficacy and the toxicity of methotrexate used for the treatment of rheumatoid arthritis, as evidenced by single locus and haplotype analyses. Pharmacogenetics 2002; 12: 183–190.

    Article  CAS  PubMed  Google Scholar 

  139. Ulrich CM, Yasui Y, Storb R, Schubert MM, Wagner JL, Bigler J et al. Pharmacogenetics of methotrexate: toxicity among marrow transplantation patients varies with the methylenetetrahydrofolate reductase C677T polymorphism. Blood 2001; 98: 231–234.

    Article  CAS  PubMed  Google Scholar 

  140. Taub JW, Matherly LH, Ravindranath Y, Kaspers G-JL, Rots MG, Zantwijk CH . Polymorphisms in methylenetetrahydrofolate reductase and methotrexate sensitivity in childhood acute lymphoblastic leukemia. Leukemia 2002; 16: 764–765.

    Article  CAS  PubMed  Google Scholar 

  141. Pui C-H, Campana D . New definition of remission of childhood acute lymphoblastic leukemia. Leukemia 2000; 14: 783–785.

    Article  CAS  PubMed  Google Scholar 

  142. Szczepanski T, Orfão A, van der Velden VJH, San Miguel JF, van Dongen JJM . Minimal residual disease in leukaemia patients. Lancet Oncol 2001; 2: 409–417.

    Article  CAS  PubMed  Google Scholar 

  143. Coustan-Smith E, Sancho J, Hancock ML, Boyett JM, Behm FG, Raimondi SC et al. Clinical importance of minimal residual disease in childhood acute lymphoblastic leukemia. Blood 2000; 96: 2691–2696.

    CAS  PubMed  Google Scholar 

  144. Panzer-Grümayer ER, Schneider M, Panzer S, Fasching K, Gadner H . Rapid molecular response during early induction chemotherapy predicts a good outcome in childhood acute lymphoblastic leukemia. Blood 2002; 95: 790–794.

    Google Scholar 

  145. Coustan-Smith E, Sancho J, Behm FG, Hancock ML, Razzouk RI, Ribeiro RC et al. Prognostic significance of measuring early clearance of leukemic cells by flow cytometry in childhood acute lymphoblastic leukemia. Blood 2002; 100: 52–58.

    Article  CAS  PubMed  Google Scholar 

  146. Neale GAM, Coustan-Smith E, Pan Q, Chen X, Gruhn B, Stow P et al. Tandem application of flow cytometry and polymerase chain reaction for comprehensive detection of minimal residual disease in childhood acute lymphoblastic leukemia. Leukemia 1999; 13: 1221–1226.

    Article  CAS  PubMed  Google Scholar 

  147. Coustan-Smith E, Sancho J, Hancock ML, Razzouk BI, Ribeiro RC, Rivera GK et al. Use of peripheral blood instead of bone marrow to monitor residual disease in children with acute lymphoblastic leukemia. Blood 2002; 100: 2399–2402.

    Article  CAS  PubMed  Google Scholar 

  148. van der Velden VHJ, Jacobs DCH, Wijkhuijs AJM, Comans-Bitter WM, Willemse MJ, Hählen K et al. Minimal residual disease levels in bone marrow and peripheral blood are comparable in children with T cell acute lymphoblastic leukemia (ALL), but not in precursor-B-ALL. Leukemia 2002; 16: 1432–1436.

    Article  CAS  PubMed  Google Scholar 

  149. Pui C-H, Cheng C, Leung W, Rai SN, Rivera GK, Sandlund JT et al. Extended follow-up of long-term survivors of childhood acute lymphoblastic leukemia. N Engl J Med 2003; 349: 640–649.

    Article  PubMed  Google Scholar 

  150. Vilmer E, Suciu S, Ferster A, Bertrand Y, Cavé H, Thyss A et al. Long-term results of three randomized trials (58831, 58832, 58881) in childhood acute lymphoblastic leukemia: a CLCG-EORTC report. Children Leukemia Cooperative Group. Leukemia 2000; 14: 2257–2266.

    Article  CAS  PubMed  Google Scholar 

  151. Manera R, Ramirez I, Mullins J, Pinkel D . Pilot studies of species-specific chemotherapy of childhood acute lymphoblastic leukemia using genotype and immunophenotype. Leukemia 2000; 14: 1354–1361.

    Article  CAS  PubMed  Google Scholar 

  152. Pui C-H . Toward optimal central nervous system-directed treatment in childhood acute lymphoblastic leukemia. J Clin Oncol 2003; 21: 179–181.

    Article  PubMed  Google Scholar 

  153. Mahmoud HH, Rivera GK, Hancock ML, Krance RA, Kun LE, Behm FG et al. Low leukocyte counts with blast cells in cerebrospinal fluid of children with newly diagnosed acute lymphoblastic leukemia. N Engl J Med 1993; 329: 314–319.

    Article  CAS  PubMed  Google Scholar 

  154. Bürger B, Zimmermann M, Mann G, Kühl J, Löning L, Riehm H et al. Diagnostic cerebrospinal fluid examination in children with acute lymphoblastic leukemia: significance of low leukocyte counts with blasts or traumatic lumbar puncture. J Clin Oncol 2003; 21: 184–188.

    Article  PubMed  Google Scholar 

  155. Gajjar A, Harrison PL, Sandlund JT, Rivera GK, Ribeiro RC, Rubnitz JE et al. Traumatic lumbar puncture at diagnosis adversely affects outcome in childhood acute lymphoblastic leukemia. Blood 2000; 96: 3381–3384.

    CAS  PubMed  Google Scholar 

  156. Howard SC, Gajjar AJ, Cheng C, Kritchevsky SB, Somes GW, Harrison PL et al. Risk factors for traumatic and bloody lumbar puncture in children with acute lymphoblastic leukemia. JAMA 2002; 288: 2001–2007.

    Article  PubMed  Google Scholar 

  157. Gandhi V, Plunkett W, Rodriguez Jr CO, Nowak BJ, Du M, Ayres M et al. Compound GW506U78 in refractory hematologic malignancies: relationship between cellular pharmaco-kinetics and clinical response. J Clin Oncol 1998; 16: 3607–3615.

    Article  CAS  PubMed  Google Scholar 

  158. Druker BJ, Sawyers CL, Kantarjian H, Resta DJ, Reese SF, Ford JM et al. Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N Engl J Med 2001; 344: 1038–1042.

    Article  CAS  PubMed  Google Scholar 

  159. Kantarjian HM, Gandhi V, Kozuch P, Faderl S, Giles F, Cortes J et al. Phase I clinical and pharmacology study of clofarabine in patients with solid and hematologic cancers. J Clin Oncol 2003; 21: 1167–1173.

    Article  CAS  PubMed  Google Scholar 

  160. Navolanic PM, Pui C-H, Larson RA, Bishop MR, Pearce TE, Cairo MS et al. Elitek™-rasburicase: an effective means to prevent and treat hyperuricemia associated with tumor lysis syndrome: a Meeting Report, Dallas, Texas, January 2002. Leukemia 2003; 17: 499–514.

    Article  CAS  PubMed  Google Scholar 

  161. Hande KR, Hixson CV, Chabner BA . Postchemotherapy purine excretion in lymphoma patients receiving allopurinol. Cancer Res 1981; 41: 2273–2279.

    CAS  PubMed  Google Scholar 

  162. Cunningham SG . Fluid and electrolyte disturbances associated with cancer and its treatment. Nurs Clin N Am 1982; 17: 579–593.

    CAS  Google Scholar 

  163. Boles J-M, Dutel J-L, Briere J, Mialon P, Robasckiewicz M, Garre M et al. Acute renal failure caused by extreme hyperphosphatemia after chemotherapy of an acute lymphoblastic leukemia. Cancer 1984; 53: 2425–2429.

    Article  CAS  PubMed  Google Scholar 

  164. Stapleton FB, Strother DR, Roy III S, Wyatt RJ, McKay CP, Murphy SB . Acute renal failure at onset of therapy for advanced stage Burkitt lymphoma and B cell acute lymphoblastic lymphoma. Pediatrics 1988; 82: 863–869.

    CAS  PubMed  Google Scholar 

  165. Fleming DR, Doukas MA . Acute tumor lysis syndrome in hematologic malignancies. Leukemia Lymphoma 1992; 8: 315–318.

    Article  CAS  PubMed  Google Scholar 

  166. Stokes DN . The tumour lysis syndrome: intensive care aspects of paediatric oncology. Anaesthesia 1989; 44: 133–136.

    Article  CAS  PubMed  Google Scholar 

  167. Hande KR, Garrow GC . Acute tumor lysis syndrome in patients with high-grade non-Hodgkin's lymphoma. Am J Med 1993; 94: 133–139.

    Article  CAS  PubMed  Google Scholar 

  168. Stucky LA . Acute tumor lysis syndrome: assessment and nursing implications. Oncol Nurs Forum 1993; 20: 49–59.

    CAS  PubMed  Google Scholar 

  169. Chasty RC, Liu-Yin JA . Acute tumour lysis syndrome. Br J Hosp Med 1993; 49: 488–492.

    CAS  PubMed  Google Scholar 

  170. Dietz KA, Flaherty AM . Oncologic emergencies. In: Groenwald SL, Frogge MH, Goodman M, Yarbro CH (eds). Cancer Nursing: Principles and Practice 3rd edn. Boston: Jones & Bartlett, 1993, pp 821–824.

    Google Scholar 

  171. Kedar A, Grow W, Neiberger RE . Clinical versus laboratory tumor lysis syndrome in children with acute leukemia. Pediatr Hematol Oncol 1995; 12: 129–134.

    Article  CAS  PubMed  Google Scholar 

  172. Lawrence J . Critical care issues in the patient with hematologic malignancy. Semin Oncol Nurs 1994; 10: 198–207.

    Article  CAS  PubMed  Google Scholar 

  173. Veenstra J, Krediet RT, Somers R, Arisz L . Tumour lysis syndrome and acute renal failure in Burkitt's lymphoma. Description of 2 cases and a review of the literature on prevention and management. Neth J Med 1994; 45: 211–216.

    CAS  PubMed  Google Scholar 

  174. Lorigan PC, Woodings PL, Morgenstern GR, Scarffe JH . Tumour lysis syndrome, case report and review of the literature. Ann Oncol 1996; 7: 631–636.

    Article  CAS  PubMed  Google Scholar 

  175. Jones DP, Mahmoud H, Chesney RW . Tumor lysis syndrome: pathogenesis and management. Pediatr Nephrol 1995; 9: 206–212.

    Article  CAS  PubMed  Google Scholar 

  176. Kjellstrand CM, Campbell II DC, von Hartitzsch B, Buselmeier TJ . Hyperuricemic acute renal failure. Arch Intern Med 1974; 133: 349–359.

    Article  CAS  PubMed  Google Scholar 

  177. Mahmoud HH, Leverger G, Patte C, Harvey E, Lascombes F . Advances in the management of malignancy-associated hyperuricaemia. Br J Cancer 1998; 77 (Suppl 4): 18–20.

    Article  PubMed  PubMed Central  Google Scholar 

  178. Ten Harkel ADJ, Kist-Van Holthe JE, Van Weel M, Van der Vorst MMJ . Alkalinization and the tumor lysis syndrome. Med Pediatr Oncol 1998; 31: 27–28.

    Article  CAS  PubMed  Google Scholar 

  179. Wolf G, Hegewisch-Becker S, Hossfeld DK, Stahl RAK . Hyperuricemia and renal insufficiency associated with malignant disease: urate oxidase as an efficient therapy? Am J Kidney Dis 1999; 34: E20.

    Article  CAS  PubMed  Google Scholar 

  180. Dillman RO . Infusion reactions associated with the therapeutic use of monoclonal antibodies in the treatment of malignancy. Cancer Metastasis Rev 1999; 18: 465–471.

    Article  CAS  PubMed  Google Scholar 

  181. Bishop MR, Coccia PF . Tumor lysis syndrome. In: Abeloff MD, Armitage JO, Lichter AS, Niederhuber JE (eds). Clinical Oncology 2nd edn. New York: Churchill Livingstone, 2000, pp 750–754.

    Google Scholar 

  182. Flombaum CD . Metabolic emergencies in the cancer patient. Semin Oncol 2000; 27: 322–334.

    CAS  PubMed  Google Scholar 

  183. Arrambide K, Toto RD . Tumor lysis syndrome. Semin Nephrol 1993; 13: 273–280.

    CAS  PubMed  Google Scholar 

  184. Ezzone SA . Tumor lysis syndrome. Semin Oncol Nurs 1999; 15: 202–208.

    Article  CAS  PubMed  Google Scholar 

  185. Jeha S . Tumor lysis syndrome. Semin Hematol 2001; 38 (4 Suppl 10): 4–8.

    Article  CAS  PubMed  Google Scholar 

  186. Hogan DK, Rosenthal LD . Oncologic emergencies in the patient with lymphoma. Semin Oncol Nurs 1998; 14: 312–320.

    Article  CAS  PubMed  Google Scholar 

  187. Kelly KM, Lange B . Oncologic emergencies. Pediatr Clin N Am 1997; 44: 809–830.

    Article  CAS  Google Scholar 

  188. Easton J, Noble S, Jarvis B . Rasburicase. Paediatr Drugs 2001; 3: 433–437.

    Article  CAS  PubMed  Google Scholar 

  189. Laboureur P, Langlois C . Urate-oxydase d'Aspergillus flavus: I. Obtention, purification, propriétés. Bull Soc Chim Biol (Paris) 1968; 50: 811–825.

    CAS  Google Scholar 

  190. Chanteclair G, Cartault F, Humbert J-C, Olive D, Neimann N . Place de l'urate-oxydase dans la prévention de l'hyperuricémie en hématologie infantile. Rev Int Pediatr 1974-1975; 50: 47–56.

    Google Scholar 

  191. Leplatois P, Le Douarin B, Loison G . High-level production of a peroxisomal enzyme: Aspergillus flavus uricase accumulates intracellularly and is active in Saccharomyces cerevisiae. Gene 1992; 122: 139–145.

    Article  CAS  PubMed  Google Scholar 

  192. Pui C-H, Relling MV, Lascombes F, Harrison PL, Struxiano A, Mondesir J-M et al. Urate oxidase in prevention and treatment of hyperuricemia associated with lymphoid malignancies. Leukemia 1997; 11: 1813–1816.

    Article  CAS  PubMed  Google Scholar 

  193. Leach M, Parsons RM, Reilly JT, Winfield DA . Efficacy of urate oxidase (uricozyme) in tumour lysis induced urate nephropathy. Clin Lab Haematol 1998; 20: 169–172.

    Article  CAS  PubMed  Google Scholar 

  194. Fam AG . Difficult gout and new approaches for control of hyperuricemia in the allopurinol-allergic patient. Curr Rheumatol Rep 2001; 3: 29–35.

    Article  CAS  PubMed  Google Scholar 

  195. Goldman SC, Holcenberg JS, Finklestein JZ, Hutchinson R, Kreissman S, Johnson FL et al. A randomized comparison between rasburicase and allopurinol in children with lymphoma or leukemia at high risk for tumor lysis. Blood 2001; 97: 2998–3003.

    Article  CAS  PubMed  Google Scholar 

  196. Pui C-H . Introduction – optimal treatment of malignancies associated with hyperuricemia. Semin Hematol 2001; 38 (4 Suppl 10): 1–3.

    Article  Google Scholar 

  197. Patte C, Sakiroglu O, Sommelet D . European experience in the treatment of hyperuricemia. Semin Hematol 2001; 38 (4 Suppl 10): 9–12.

    Article  CAS  PubMed  Google Scholar 

  198. Pui C-H . Urate oxidase in the prophylaxis or treatment of hyperuricemia: the United States experience. Semin Hematol 2001; 38 (4 Suppl 10): 13–21.

    Article  CAS  PubMed  Google Scholar 

  199. Pui C-H, Jeha S, Irwin D, Camitta B . Recombinant urate oxidase (rasburicase) in the prevention and treatment of malignancy-associated hyperuricemia in pediatric and adult patients: results of a compassionate-use trial. Leukemia 2001; 15: 1505–1509.

    Article  CAS  PubMed  Google Scholar 

  200. Pui C-H, Mahmoud HH, Wiley JM, Woods GM, Leverger G, Camitta B et al. Recombinant urate oxidase for the prophylaxis or treatment of hyperuricemia in patients with leukemia or lymphoma. J Clin Oncol 2001; 19: 697–704.

    Article  CAS  PubMed  Google Scholar 

  201. Pui C-H . Rasburicase: a potent uricolytic agent. Expert Opin Pharmacother 2002; 3: 433–452.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

GQ Daley was supported in part by the Grants NIH CA76418, CA86991, DK59279 and HL71265, and a sponsored research agreement from the Schering-Plough Research Institute. GQ Daley is a Birnbaum Scholar of the Leukemia and Lymphoma Society of America. P Porcu was supported in part by a grant (K23CA102155) from the NCI. C-H Pui was supported in part by the Grants CA 21765, CA 31566, CA 51001, CA 78824, CA 29139, CA 37379 and GM 61393 from the US National Institutes of Health; a Center of Excellence grant from the State of Tennessee, USA; and the American Lebanese Syrian Associated Charities. C-H Pui is the American Cancer Society FM Kirby Clinical Research Professor. JA McCubrey was supported in part by the Grants CA 51025 and CA098195.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larson, R., Daley, G., Schiffer, C. et al. Treatment by design in leukemia, a meeting report, Philadelphia, Pennsylvania, December 2002. Leukemia 17, 2358–2382 (2003). https://doi.org/10.1038/sj.leu.2403156

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403156

Keywords

This article is cited by

Search

Quick links