Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Leukemogenomics

Somatic mitochondrial DNA mutations in adult-onset leukaemia

Abstract

Mitochondrial genome instability has recently been demonstrated in a wide variety of human tumours and is implicated in the development of the myelodysplastic syndromes, a heterogeneous group of haematological disorders with an increased risk of malignant transformation. We therefore investigated the incidence of somatic mitochondrial DNA (mtDNA) mutations in patients with adult-onset leukaemia. We sequenced the entire mitochondrial genome from both normal tissue (buccal epithelial cells) and the leukaemia from 24 patients with adult-onset leukaemia. Somatic mtDNA mutation was present in nine individuals (≈40%) and in each case the tumour genome differed from the normal genome sequence by a single sequence change. Using PCR-RFLP analysis and real-time PCR, we have studied in detail the mutation present in one patient with acute lymphatic leukaemia, demonstrating that the mutation is associated specifically with the leukaemia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J et al. Sequence and organization of the human mitochondrial genome. Nature 1981; 290: 457–465.

    Article  CAS  Google Scholar 

  2. Yakes FM, Van Houten B . Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc Natl Acad Sci USA 1997; 94: 514–519.

    Article  CAS  Google Scholar 

  3. Marcelino LA, Thilly WG . Mitochondrial mutagenesis in human cells and tissues. Mutat Res 1999; 434: 177–203.

    Article  CAS  Google Scholar 

  4. Wallace DC . Mitochondrial diseases in man and mouse. Science 1999; 283: 1482–1488.

    Article  CAS  Google Scholar 

  5. DiMauro S, Schon EA . Mitochondrial DNA mutations in human disease. Am J Med Genet 2001; 106: 18–26.

    Article  CAS  Google Scholar 

  6. Chinnery PF, Johnson MA, Wardell TM, Singh-Kler R, Hayes C, Brown DT et al. Epidemiology of pathogenic mitochondrial DNA mutations. Ann Neurol 2000; 48: 188–193.

    Article  CAS  Google Scholar 

  7. Lightowlers RN, Chinnery PF, Turnbull DM, Howell N . Mammalian mitochondrial genetics: heredity, heteroplasmy and disease. Trends Genet 1997; 13: 450–455.

    Article  CAS  Google Scholar 

  8. McFarland R, Clark KM, Morris AA, Taylor RW, Macphail S, Lightowlers RN et al. Multiple neonatal deaths due to a homoplasmic mitochondrial DNA mutation. Nat Genet 2002; 30: 145–146.

    Article  CAS  Google Scholar 

  9. Cortopassi G, Arnheim N . Detection of specific mitochondrial DNA deletion in tissues of older humans. Nucleic Acids Res 1990; 275: 169–180.

    Google Scholar 

  10. Wallace DC . Mitochondrial genetics: a paradigm for aging and degenerative diseases? Science 1992; 256: 628–632.

    Article  CAS  Google Scholar 

  11. Brierley EJ, Johnson MA, Lightowlers RN, James OF, Turnbull DM . Role of mitochondrial DNA mutations in human aging: implications for the central nervous system and muscle. Ann Neurol 1998; 43: 217–223.

    Article  CAS  Google Scholar 

  12. Kowald A, Kirkwood TB . Accumulation of defective mitochondria through delayed degradation of damaged organelles and its possible role in the ageing of post-mitotic and dividing cells. J Theor Biol 2000; 202: 145–160.

    Article  CAS  Google Scholar 

  13. Elson JL, Samuels DC, Turnbull DM, Chinnery PF . Random intracellular drift explains the clonal expansion of mitochondrial DNA mutations with age. Am J Hum Genet 2001; 68: 802–806.

    Article  CAS  Google Scholar 

  14. Chinnery PF, Samuels DC, Elson J, Turnbull DM . Accumulation of mitochondrial DNA mutations in ageing, cancer, and mitochondrial disease: is there a common mechanism? Lancet 2002; 360: 1323–1325.

    Article  CAS  Google Scholar 

  15. Polyak K, Li Y, Zhu H, Lengauer C, Willson JK, Markowitz SD et al. Somatic mutations of the mitochondrial genome in human colorectal tumours. Nat Genet 1998; 20: 291–293.

    Article  CAS  Google Scholar 

  16. Augenlicht LH, Heerdt BG . Mitochondria: integrators in tumorigensis? Nat Genet 2001; 28: 104–105.

    Article  CAS  Google Scholar 

  17. Penta JS, Johnson FM, Wachsman JT, Copeland WC . Mitochondrial DNA in human malignancy. Mutat Res 2001; 488: 119–133.

    Article  CAS  Google Scholar 

  18. Fliss MS, Usadel H, Cabellero OL, Wu L, Buta MR, Eleff SM et al. Facile detection of mitochondrial DNA mutations in tumors and bodily fluids. Science 2000; 287: 2017–2019.

    Article  CAS  Google Scholar 

  19. Jeronimo C, Nomoto S, Caballero OL, Usadel H, Henrique R, Varzim G et al. Mitochondrial mutations in early stage prostate cancer and bodily fluids. Oncogene 2001; 20: 5195–5198.

    Article  CAS  Google Scholar 

  20. Jones JB, Song JJ, Hempen PM, Parmigiani G, Hruban RH, Kern SE . Detection of mitochondrial DNA mutations in pancreatic cancer offers a ‘mass’-ive advantage over detection of nuclear DNA mutations. Cancer Res 2001; 61: 1299–1304.

    CAS  PubMed  Google Scholar 

  21. Kirches E, Krause G, Warich-Kirches M, Weis S, Schneider T, Meyer-Puttlitz B et al. High frequency of mitochondrial DNA mutations in glioblastoma multiforme identified by direct sequence comparison to blood samples. Int J Cancer 2001; 93: 534–538.

    Article  CAS  Google Scholar 

  22. Gattermann N, Retzlaff S, Wang Y-L, Berneburg M, Heinisch J, Wlaschek M et al. A heteroplasmic point mutation of mitochondrial tRNALeu(CUN) in non-lymphoid haemopoietic cell lineages from a patient with acquired idiopathic sideroblastic anaemia. Br J Haematol 1996; 93: 845–855.

    Article  CAS  Google Scholar 

  23. Gattermann N, Retzlaff S, Wang Y-L, Hofhaus G, Heinisch J, Aul C . Heteroplasmic point mutations of mitochondrial DNA affecting subunit I of cytochrome c oxidase in two patients with acquired idiopathic sideroblastic anemia. Blood 1997; 90: 4961–4972.

    CAS  PubMed  Google Scholar 

  24. Wang YL, Choi HK, Aul C, Gattermann N, Heinisch J . The MERRF mutation of mitochondrial DNA in the bone marrow of a patient with acquired idiopathic sideroblastic anemia. Am J Hematol 1999; 60: 83–84.

    Article  CAS  Google Scholar 

  25. Greenberg PL, Young NS, Gattermann N . Myelodysplastic syndromes. Hematology (Am Soc Hematol Educ Program) 2002, 136–161.

  26. Taylor RW, Taylor GA, Durham SE, Turnbull DM . The determination of complete human mitochondrial DNA sequences in single cells: implications for the study of somatic mitochondrial DNA point mutations. Nucleic Acids Res 2001; 29: e74.

    Article  CAS  Google Scholar 

  27. Andrews RM, Kubacka I, Chinnery PF, Lightowlers RN, Turnbull DM, Howell N . Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nat Genet 1999; 23: 147.

    Article  CAS  Google Scholar 

  28. Herrnstadt C, Elson JL, Fahy E, Preston G, Turnbull DM, Anderson C et al. Reduced-median-network analysis of complete mitochondrial DNA coding-region sequences for the major African, Asian, and European haplogroups. Am J Hum Genet 2002; 70: 1152–1171.

    Article  CAS  Google Scholar 

  29. Wu CH, Yeh LS, Huang H, Arminski L, Castro-Alvear J, Chen Y et al. The protein information resource (PIR). Nucleic Acids Res 2003; 31: 345–347.

    Article  Google Scholar 

  30. Ivanova R, Lepage V, Loste MN, Schachter F, Wijnen E, Busson M et al. Mitochondrial DNA sequence variation in human leukemic cells. Int J Cancer 1998; 76: 495–498.

    Article  CAS  Google Scholar 

  31. Reddy PL, Shetty VT, Dutt D, York A, Dar S, Mundle SD et al. Increased incidence of mitochondrial cytochrome c-oxidase gene mutations in patients with myelodysplastic syndromes. Br J Haematol 2002; 116: 564–575.

    Article  CAS  Google Scholar 

  32. Shin MG, Kajigaya S, Levin BC, Young NS . Mitochondrial DNA mutations in patients with myelodysplastic syndromes. Blood 2003; 101: 3118–3125.

    Article  CAS  Google Scholar 

  33. Broker S, Meunier B, Rich P, Gattermann N, Hofhaus G . MtDNA mutations associated with sideroblastic anaemia cause a defect of mitochondrial cytochrome c oxidase. Eur J Biochem 1998; 258: 132–138.

    Article  CAS  Google Scholar 

  34. Rötig A, Cormier V, Blanche S, Bonnefont J-P, Ledeist F . Pearson's marrow pancreas syndrome. A multisystem mitochondrial disorder of infancy. J Clin Invest 1990; 86: 1601–1608.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Steve O'Brien, Sue Miller and Triff Mainou-Fowler for help in accessing chronic leukaemia samples, and Geoff Taylor for his help with the mtDNA sequencing. This work was supported by a grant (to DMT, RWT, PGM and SJP) from the Leukaemia Research Fund, UK.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, L., Luo, L., Proctor, S. et al. Somatic mitochondrial DNA mutations in adult-onset leukaemia. Leukemia 17, 2487–2491 (2003). https://doi.org/10.1038/sj.leu.2403146

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403146

Keywords

This article is cited by

Search

Quick links