Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Molecular Targets For Therapy (MTT)
  • Published:

Molecular Targets for Therapy (MTT)

Cobalt chloride and low oxygen tension trigger differentiation of acute myeloid leukemic cells: possible mediation of hypoxia-inducible factor-1α

Abstract

Cellular and systemic O2 concentrations are tightly regulated to maintain delicate oxygen homeostasis. Although the roles of hypoxia in solid tumors have been widely studied, few studies were reported regarding the possible effects of hypoxia on leukemic cells. Here, we showed for the first time that low concentrations of cobalt chloride (CoCl2), a hypoxia-mimicking agent, and 2–3% O2 triggered differentiation of various subtypes of human acute myeloid leukemic (AML) cell lines, including NB4, U937 and Kasumi-1 cells, respectively, from M3, M5 and M2b-type AML, but CoCl2 did not modulate AML subtype-specific fusion proteins promyelocytic leukemia-retinoic acid receptor alpha (PML-RARα) and AML1-ETO. Treatment with CoCl2 also induced primary leukemic cells from some AML patients to undergo differentiation. Similar to what occurs in solid tumor cells, CoCl2-mimicked hypoxia also increased the level of hypoxia-inducible factor (HIF)-1α protein and its DNA-binding activity in leukemic cells. The CoCl2 induction of HIF-1α protein and its DNA-binding activity were inhibited by 3-morpholinosydnonimine, which also blocked CoCl2-induced cell differentiation in leukemic cells. These results provide an insight into a possible link of hypoxia or HIF-1α and leukemic cell differentiation, and are possibly of significance to explore clinical potentials of hypoxia or hypoxia-mimicking agents and novel target-based drugs for differentiation therapy of leukemia

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

References

  1. Melnick A, Licht JD . Deconstructing a disease: RARalpha, its fusion partners, and their roles in the pathogenesis of acute promyelocytic leukemia. Blood 1999; 93: 3167–3215.

    CAS  PubMed  Google Scholar 

  2. Minucci S, Monestiroli S, Giavara S, Ronzoni S, Marchesi F, Insinga A et al. PML-RAR induces promyelocytic leukemias with high efficiency following retroviral gene transfer into purified murine hematopoietic progenitors. Blood 2002; 100: 2985–2989.

    Article  Google Scholar 

  3. Kogan SC, Brown DE, Shultz DB, Truong BT, Lallemand-Breitenbach V, Guillemin MC et al. BCL-2 cooperates with promyelocytic leukemia retinoic acid receptor alpha chimeric protein (PMLRARalpha) to block neutrophil differentiation and initiate acute leukemia. J Exp Med 2001; 193: 531–543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lo Coco F, Nervi C, Avvisati G, Mandelli F . Acute promyelocytic leukemia: a curable disease. Leukemia 1998; 12: 1866–1880.

    Article  CAS  PubMed  Google Scholar 

  5. Tallman MS, Nabhan C, Feusner JH, Rowe JM . Acute promyelocytic leukemia: evolving therapeutic strategies. Blood 2002; 9: 759–767.

    Article  Google Scholar 

  6. Shen ZX, Chen GQ, Ni JH, Li XS, Xiong SM, Qiu QY et al. Use of arsenic trioxide in the treatment of acute promyelocytic leukemia: II. Clinical efficacy and pharmacokinetics in relapsed patients. Blood 1997; 89: 3354–3364.

    CAS  PubMed  Google Scholar 

  7. Soignet SL, Maslak P, Wang ZG, Jhanwar S, Calleja E, Dardashti LJ et al. Complete remission after treatment of acute promyelocytic leukemia with arsenic trioxide. N Engl J Med 1998; 339: 1341–1348.

    Article  CAS  PubMed  Google Scholar 

  8. Chen GQ, Shi XG, Tang W, Xiong SM, Zhu J, Cai X et al. Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL): I. As2O3 exerts dose-dependent dual effects on APL cells. Blood 1997; 89: 3053–3345.

    Google Scholar 

  9. Zhu J, Chen Z, Lallemand-Breitenbach V, de The H . How acute promyelocytic leukaemia revived arsenic. Nat Rev Cancer 2002; 2: 705–713.

    Article  CAS  PubMed  Google Scholar 

  10. Cai X, Shen YL, Zhu Q, Jia PM, Yu Y, Zhou L et al. Arsenic trioxide-induced apoptosis and differentiation are associated respectively with mitochondrial transmembrane potential collapse and retinoic acid signaling pathways in acute promyelocytic leukemia. Leukemia 2000; 14: 262–270.

    Article  CAS  PubMed  Google Scholar 

  11. Semenza GL . Hypoxia-inducible factor 1: oxygen homeostasis and disease pathophysiology. Trends Mol Med 2001; 7: 345–350.

    Article  CAS  PubMed  Google Scholar 

  12. Graeber TG, Osmanian C, Jacks T, Housman DE, Koch CJ, Lowe SW et al. Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature 1996; 379: 88–91.

    Article  CAS  PubMed  Google Scholar 

  13. Zhong H, De Marzo AM, Laughner E, Lim M, Hilton DA, Zagzag D et al. Overexpression of hypoxia-inducible factor 1alpha in common human cancers and their metastases. Cancer Res 1999; 59: 5830–5835.

    CAS  PubMed  Google Scholar 

  14. Jiang BH, Agani F, Passaniti A, Semenza GL . V-SRC induces expression of hypoxia-inducible factor 1 (HIF-1) and transcription of genes encoding vascular endothelial growth factor and enolase 1: involvement of HIF-1 in tumor progression. Cancer Res 1997; 57: 5328–5835.

    CAS  PubMed  Google Scholar 

  15. Jensen PO, Mortensen BT, Hodgkiss RJ, Iversen PO, Christensen IJ, Helledie N et al. Increased cellular hypoxia and reduced proliferation of both normal and leukaemic cells during progression of acute myeloid leukaemia in rats. Cell Prolif 2000; 33: 381–395.

    Article  CAS  PubMed  Google Scholar 

  16. Roussel MJ, Lanotte M . Maturation sensitive and resistant t(15;17) NB4 cell lines as tools for APL physiopathology: nomenclature of cells and repertory of their known genetic alterations and phenotypes. Oncogene 2001; 20: 7287–7291.

    Article  CAS  PubMed  Google Scholar 

  17. Asou H, Tashiro S, Hamamoto K, Otsuji A, Kita K, Kamada N . Establishment of a human acute myeloid leukemia cell line (Kasumi-1) with 8;21 chromosome translocation. Blood 1991; 77: 2031–2036.

    CAS  PubMed  Google Scholar 

  18. Wang GL, Semenza GL . Characterization of hypoxia-inducible factor 1 and regulation of DNA binding activity by hypoxia. J Biol Chem 1993; 268: 21513–21518.

    CAS  PubMed  Google Scholar 

  19. Piret JP, Mottet D, Raes M, Michiels C . CoCl2, a chemical inducer of hypoxia-inducible factor-1, and hypoxia reduce apoptotic cell death in hepatoma cell line HepG2. Ann NY Acad Sci 2002; 973: 443–447.

    Article  CAS  PubMed  Google Scholar 

  20. Sogawa K, Numayama-Tsuruta K, Ema M, Abe M, Abe H, Fujii-Kuriyama Y . Inhibition of hypoxia-inducible factor 1 activity by nitric oxide donors in hypoxia. Proc Natl Acad Sci USA 1998; 95: 7368–7373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ivanovic Z, Dello Sbarba P, Trimoreau F, Faucher JL, Praloran V . Primitive human HPCs are better maintained and expanded in vitro at 1 percent oxygen than at 20 percent. Transfusion 2000; 40: 1482–1488.

    Article  CAS  PubMed  Google Scholar 

  22. Desplat V, Faucher JL, Mahon FX, Dello Sbarba P, Praloran V, Ivanovic Z . Hypoxia modifies proliferation and differentiation of CD34(+) CML cells. Stem Cells 2002; 20: 347–354.

    Article  CAS  PubMed  Google Scholar 

  23. Harris AL . Hypoxia – a key regulatory factor in tumour growth. Nat Rev Cancer 2002; 2: 38–47.

    Article  CAS  PubMed  Google Scholar 

  24. Ivan M, Haberberger T, Gervasi DC, Michelson KS, Gunzler V, Kondo K et al. Biochemical purification and pharmacological inhibition of a mammalian prolyl hydroxylase acting on hypoxia-inducible factor. Proc Natl Acad Sci USA 2002; 99: 13459–13464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hon WC, Wilson MI, Harlos K, Claridge TD, Schofield CJ, Pugh CW et al. Structural basis for the recognition of hydroxyproline in HIF-1 alpha by pVHL. Nature 2002; 417: 975–978.

    Article  CAS  PubMed  Google Scholar 

  26. Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M et al. HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 2001; 292: 464–468.

    Article  CAS  PubMed  Google Scholar 

  27. Schuch G, Machluf M, Bartsch Jr G, Nomi M, Richard H, Atala A et al. In vivo administration of vascular endothelial growth factor (VEGF) and its antagonist, soluble neuropilin-1, predicts a role of VEGF in the progression of acute myeloid leukemia in vivo. Blood 2002; 100: 4622–4628.

    Article  CAS  PubMed  Google Scholar 

  28. Salomon-Nguyen F, Della-Valle V, Mauchauffe M, Busson-Le Coniat M, Ghysdael J, Berger R et al. The t(1;12)(q21;p13) translocation of human acute myeloblastic leukemia results in a TEL-ARNT fusion. Proc Natl Acad Sci USA 2000; 97: 6757–6762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Busson-Le Coniat M, Salomon-Nguyen F, Dastugue N, Maarek O, Lafage-Pochitaloff M, Mozziconacci MJ et al. Fluorescence in situ hybridization analysis of chromosome 1 abnormalities in hematopoietic disorders: rearrangements of DNA satellite II and new recurrent translocations. Leukemia 1999; 13: 1975–1981.

    Article  CAS  PubMed  Google Scholar 

  30. Leszczyniecka M, Roberts T, Dent P, Grant S, Fisher PB . Differentiation therapy of human cancer: basic science and clinical applications. Pharmacol Ther 2001; 90: 105–156.

    Article  CAS  PubMed  Google Scholar 

  31. Zwiebel JA . New agents for acute myelogenous leukemia. Leukemia 2000; 14: 488–490.

    Article  CAS  PubMed  Google Scholar 

  32. Bowie EA, Hurley PJ . Cobalt chloride in the treatment of refractory anaemia in patients undergoing long-term haemodialysis. Aust NZ J Med 1975; 5: 306–314.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by National Key Program (973) for Basic Research of China (NO2002CB512806), Key Science and Technology Development Project (CGQ) and Natural Science Foundation (HY) of Shanghai, 100-Talent Program of Chinese Academy of Sciences (CGQ).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, Y., Du, KM., Xue, ZH. et al. Cobalt chloride and low oxygen tension trigger differentiation of acute myeloid leukemic cells: possible mediation of hypoxia-inducible factor-1α. Leukemia 17, 2065–2073 (2003). https://doi.org/10.1038/sj.leu.2403141

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403141

Keywords

This article is cited by

Search

Quick links