Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Concurrent methylation of multiple genes in childhood ALL: Correlation with phenotype and molecular subgroup

Abstract

Multiple genes have been shown to be independently hypermethylated in lymphoid malignancies. We report here on the extent of concurrent methylation of E-cadherin, Dap-kinase, O6MGMT, p73, p16, p15 and p14 in 129 pediatric ALL cases. While most of these genes demonstrated methylation in a proportion of cases, O6MGMT, p16 and p14 were infrequently methylated (11, 7 and 3%, respectively). Methylation of at least one gene was found in the vast majority (83%) of cases. To determine the extent and concordance of methylation we calculated a methylation index (MI=number of methylated genes/number of studied genes) for each sample. The average MI was 0.28, corresponding to 2/7 methylated genes. MI was correlated with standard prognostic factors, including immunophenotype, age, sex, WBC and presence of specific translocations (TEL-AML1, BCR-ABL, E2A-PBX1 or MLL-AF4). We determined that children 10 years old and children presenting with high WBC (50 × 109/l) both associated with a higher MI (P<0.01 and <0.05, respectively). T-ALLs demonstrated a lower MI (median=0.17) than precursor B ALLs (median=0.28). Among the different molecular subgroups, MLL-ALLs had the highest MI (mean=0.35), while ALLs carrying the t(1;19) had the lowest MI (mean=0.07). The most common epigenetic lesion in childhood ALL was methylation of E-cadherin (72%) independent of the molecular subtype or other clinicopathological factors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Ehrlich M, Gama-Sosa MA, Huang LH, Midgett RM, Kuo KC, McCune RA et al. Amount and distribution of 5-methylcytosine in human DNA from different types of tissues of cells. Nucleic Acids Res 1982; 1: 2709–2721.

    Article  Google Scholar 

  2. Bird AP . CpG-rich islands and the function of DNA methylation. Nature 1986; 321: 209–213.

    Article  CAS  PubMed  Google Scholar 

  3. Jones PA . The DNA methylation paradox. Trends Genet 1999; 15: 34–37.

    Article  CAS  PubMed  Google Scholar 

  4. Tremblay KD, Saam JR, Ingram RS, Tilghman SM, Bartolomei MS . A paternal-specific methylation imprint marks the alleles of the mouse H19 gene. Nat Genet 1995; 9: 407–413.

    Article  CAS  PubMed  Google Scholar 

  5. Riggs AD, Pfeifer GP . X-chromosome inactivation and cell memory. Trends Genet 1992; 8: 169–174.

    Article  CAS  PubMed  Google Scholar 

  6. Busslinger M, Hurst J, Flavell RA . DNA methylation and the regulation of globin gene expression. Cell 1983; 34: 197–206.

    Article  CAS  PubMed  Google Scholar 

  7. Singal R, Ginder GD . DNA methylation. Blood 1999; 93: 4059–4070.

    CAS  PubMed  Google Scholar 

  8. Charache S, Dover G, Smith K, Talbot CC, Moyer M, Boyer S . Treatment of sickle cell anemia with 5-azacytidine results in increased fetal hemoglobin production and is associated with nonrandom hypomethylation of DNA around the gamma-delta-beta-globin gene complex. Proc Natl Acad Sci USA 1983; 80: 4842–4846.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Esteller M, Herman JG . Cancer as an epigenetic disease: DNA methylation and chromatin alterations in human tumors. J Pathol 2002; 196: 1–7.

    Article  CAS  PubMed  Google Scholar 

  10. Costello JF, Fruhwald MC, Smiraglia DJ, Rush LJ, Robertson GP, Gao X et al. Aberrant CpG-island methylation has non-random and tumor-type-specific patterns. Nat Genet 2000; 25: 132–138.

    Article  Google Scholar 

  11. Toyota M, Ahuja N, Toyota MO, Herman JG, Baylin SB, Issa JP . CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci USA 1999; 96: 8681–8686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Toyota M, Ahuja N, Suzuki H, Itoh F, Toyota MO, Imai K et al. Aberrant methylation in gastric cancer associated with the CpG island methylator phenotype. Cancer Res 1999; 59: 5438–5442.

    CAS  PubMed  Google Scholar 

  13. Strathdee G, Appleton K, Illand M, Millan DWM, Sargent J, Paul J et al. Primary ovarian carcinomas display multiple methylator phenotypes involving known tumor suppressor genes. Am J Pathol 2001; 158: 1121–1127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Esteller M . CpG island hypermethylation and tumor suppressor genes: a booming present, a brighter future. Oncogene 2002; 21: 5427–5440.

    Article  CAS  PubMed  Google Scholar 

  15. Sakai T, Toguchid J, Ohtani N, Yandell DW, Rapaport JM, Dryja TP . Allele-specific hypermethylation of the retinoblastoma tumor-suppressor gene. Am J Hum Genet 1991; 48: 880–888.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Katzenellenbogen RA, Baylin SB, Herman JG . Hypermethylation of the DAP-Kinase CpG island is a common alteration in B-cell malignancies. Blood 1999; 93: 4347–4353.

    CAS  PubMed  Google Scholar 

  17. Herman JG, Civin CI, Issa JP, Collector MI, Sharkis SJ, Baylin SB . Distinct patterns of inactivation of p15-ink4b and p16-ink4a characterize the major types of hematological malignancies. Cancer Res 1997; 57: 837–841.

    CAS  PubMed  Google Scholar 

  18. Corn PG, Smith BD, Ruckdeschel ES, Douglas D, Baylin SB, Herman JG . E-cadherin expression is silenced by 5’CpG island methylation in acute leukemia. Clin Cancer Res 2000; 6: 4243–4248.

    CAS  PubMed  Google Scholar 

  19. Kawano S, Miller CW, Gombart AF, Bartram CR, Matsuo Y, Asou H et al. Loss of p73 gene expression in leukemias/lymphomas due to hypermethylation. Blood 1999; 94: 1113–1120.

    CAS  PubMed  Google Scholar 

  20. Thomas X, Teillon MH, Belhabri A, Rimokh R, Fiere D, Magaud JP et al. Hypermethylation of calcitonin gene in adult acute leukemia at diagnosis and during complete remission. Hematol Cell Ther 1999; 41: 19–26.

    Article  CAS  PubMed  Google Scholar 

  21. Melki JR, Vincent PC, Clark SJ . Concurrent DNA hypermethylation of multiple genes in acute myeloid leukemia. Cancer Res 1999; 59: 3730–3740.

    CAS  PubMed  Google Scholar 

  22. Toyota M, Kopecky KJ, Toyota MO, Jair KW, Willman CL, Issa JP . Methylation profiling in acute myeloid leukemia. Blood 2001; 97: 2823–2829.

    Article  CAS  PubMed  Google Scholar 

  23. Garcia-Manero G, Daniel J, Smith TL, Kornblau SM, Lee M-S, Kantarjian HM et al. DNA methylation of multiple promoter-associated CpG islands in adult acute lymphoblastic leukemia. Clin Cancer Res 2002; 8: 2217–2224.

    CAS  PubMed  Google Scholar 

  24. Garcia-Manero G, Bueso-Ramos C, Daniel J, Williamson J, Kantarjian HM, Issa JP . DNA methylation patterns at relapse in adult acute lymphocytic leukemia. Clin Cancer Res 2002; 8: 1897–1903.

    CAS  PubMed  Google Scholar 

  25. Roman-Gomez J, Castillejo JA, Jimenez A, Gonzalez MG, Moreno F, Rodriguez MC et al. CpG island hypermethylation is associated with transcriptional silencing of the p21(CIP1/WAF1/SDI1) gene and confers poor prognosis in acute lymphoblastic leukemia. Blood 2002; 99: 2291–2296.

    Article  CAS  PubMed  Google Scholar 

  26. Esteller M, Gaidano G, Goodman SN, Zagonel V, Capello D, Botto B et al. Hypermethylation of the DNA repair gene O6-methyl-guanine DNA methyltransferase and survival of patients with diffuse large B-cell lymphoma. J Natl Cancer Inst 2002; 94: 26–32.

    Article  CAS  PubMed  Google Scholar 

  27. Nosaka K, Maeda M, Tamiya S, Sakai T, Mitsuya H, Matsuoka M . Increasing methylation of the CDKN2A gene is associated with the progression of adult T-cell leukemia. Cancer Res 2000; 60: 1043–1048.

    CAS  PubMed  Google Scholar 

  28. Li Q, Kopecky KJ, Mohan A, Willman CL, Appelbaum FR, Weick JK et al. Estrogen receptor methylation is associated with improved survival in adult acute myeloid leukemia. Clin Cancer Res 1999; 5: 1077–1084.

    CAS  PubMed  Google Scholar 

  29. Nakamura M, Sugita K, Inukai T, Goi K, Iijima K, Tezuka T et al. p16/MTS1/INK4A gene is frequently inactivated by hypermethylation in childhood acute lymphoblastic leukemia with 11q translocation. Leukemia 1999; 13: 884–890.

    Article  CAS  PubMed  Google Scholar 

  30. Maloney KW, McGavran L, Odom LF, Hunger SP . Acquisition of p16(ink4a) and p15(ink4b) gene abnormalities between initial diagnosis and relapse in children with acute lymphoblastic leukemia. Blood 1999; 93: 2380–2385.

    CAS  PubMed  Google Scholar 

  31. Wong IHN, Ng MHL, Huang DP, Lee JCK . Aberrant p15 promoter methylation in adult and childhood acute leukemias of nearly all morphologic subtypes: potential prognostic implications. Blood 2000; 95: 1942–1949.

    CAS  PubMed  Google Scholar 

  32. Garcia-Manero G, Jeha S, Daniel J, Williamson J, Albitar M, Kantarjian HM et al. Aberrant DNA methylation in pediatric patients with acute lymphocytic leukemia. Cancer 2003; 97: 695–702.

    Article  CAS  PubMed  Google Scholar 

  33. Siraj AK, Ozbek U, Sazawal S, Sirma S, Timson G, Al-Nasser A et al. Pre-clinical validation of a monochrome real-time multiplex assay for translocations in childhood acute lymphoblastic leukemia. Clin Cancer Res 2002; 8: 3832–3840.

    CAS  PubMed  Google Scholar 

  34. Melki JR, Vincent PC, Brown RD, Clark SJ . Hypermethylation of E-cadherin in leukemia. Blood 2000; 95: 3208–3213.

    CAS  PubMed  Google Scholar 

  35. Bornman DM, Mathew S, Alsruhe J, Herman JG, Gabrielson E . Methylation of the E-cadherin gene in bladder neoplasia and in normal urothelial from elderly individuals. Am J Pathol 2001; 159: 831–835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Baur AS, Shaw P, Burri N, Delacretaz F, Bosman FT, Chaubert P . Frequent methylation silencing of p15-INK4b (MTS2) and p16-INK4a (MTS1) in B-cell and T-cell lymphomas. Blood 1999; 94: 1773–1781.

    CAS  PubMed  Google Scholar 

  37. Batova A, Diccianni MB, Yu JC, Nobori T, Link MP, Pullen J et al. Frequent and selective methylation of p15 and deletion of both p15 and p16 in T-cell acute lymphoblastic leukemia. Cancer Res 1997; 57: 832–836.

    CAS  PubMed  Google Scholar 

  38. Guo SX, Taki T, Ohnishi H, Piao HY, Tabuchi K, Bossho F et al. Hypermethylation of p16 and p15 genes and RB protein expression in acute leukemia. Leuk Res 2000; 24: 39–46.

    Article  CAS  PubMed  Google Scholar 

  39. Shen L, Ahuja N, Shen Y, Habib NA, Toyota M, Rashid A et al. DNA methylation and environmental exposures in human hepatocellular carcinoma. J Natl Cancer Inst 2002; 94: 755–761.

    Article  CAS  PubMed  Google Scholar 

  40. Taniguchi T, Chikatsu N, Takahashi S, Fujita A, Uchimaru K, Asano S et al. Expression of p16-INK4A and p14-ARF in hematological malignancies. Leukemia 1999; 13: 1760–1769.

    Article  CAS  PubMed  Google Scholar 

  41. Hasegawa M, Nelson HH, Peters E, Ringstrom E, Posner M, Kelsey K . Patterns of gene promoter methylation in squamous cell cancer of the head and neck. Oncogene 2002; 21: 4231–4236.

    Article  CAS  PubMed  Google Scholar 

  42. Liu M, Li R, Hayashi Y, Zhu G, Guo S . Study on abnormal expression of the p73 gene in childhood acute lymphoblastic leukemia. Zhonghua Xue Ye Xue Za Zhi 2002; 23: 239–242.

    CAS  PubMed  Google Scholar 

  43. Evron E, Dooley WC, Umbricht CB, Rosenthal D, Sacchi N, Gabrielson E et al. Detection of breast cancer cells in ductal lavage fluid by methylation-specific PCR. Lancet 2001; 357: 1335–1336.

    Article  CAS  PubMed  Google Scholar 

  44. Wong TS, Chang HW, Tang KC, Wei WI, Kwong DLW, Sham JST et al. High frequency of promoter hypermethylation of the death-associated protein kinase gene in nasopharyngeal carcinoma and its detection in the peripheral blood of patients. Clin Cancer Res 2002; 8: 433–437.

    CAS  PubMed  Google Scholar 

  45. Chan MWY, Chan LW, Tang NLS, Tong JHM, Lo KW, Lee TL et al. Hypermethylation of multiple genes in tumor tissues and voided urine in urinary bladder cancer patients. Clin Cancer Res 2002; 8: 464–470.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gutierrez, M., Siraj, A., Bhargava, M. et al. Concurrent methylation of multiple genes in childhood ALL: Correlation with phenotype and molecular subgroup. Leukemia 17, 1845–1850 (2003). https://doi.org/10.1038/sj.leu.2403060

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403060

Keywords

This article is cited by

Search

Quick links