Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Spotlight
  • Published:

In BCR-ABL-positive cells, STAT-5 tyrosine-phosphorylation integrates signals induced by imatinib mesylate and Ara-C

Abstract

In BCR-ABL-positive cells, the transcription factor STAT-5 is constitutively activated by tyrosine phosphorylation. STAT-5 activation results in upregulation of bcl-XL and increased resistance to induction of apoptosis. Here, we investigated the effects of imatinib mesylate and cytosine arabinoside (Ara-C) on STAT-5 tyrosine-phosphorylation, cellular proliferation and induction of apoptosis in cell lines and primary hematopoietic cells. Imatinib mesylate treatment strongly suppressed STAT-5 tyrosine-phosphorylation in K562 and primary CML blasts. In contrast to JAK-2 and PI-3-kinase inhibition, exposure of K562 cells to imatinib mesylate resulted in obvious suppression of proliferation. Reduced cell growth was due to specific induction of caspase activation followed by apoptotic cell death. In addition, we investigated the effects of Ara-C on STAT-5 tyrosine-phosphorylation. Exposure to Ara-C resulted in significant downregulation of STAT-5 tyrosine-phosphorylation and inhibition of DNA binding. Treatment of K562 cells with Ara-C in combination with imatinib mesylate revealed synergistic effects at the level of STAT-5 tyrosine-phosphorylation and DNA binding, Hck tyrosine-phosphorylation, cell growth and induction of apoptosis. Overall, in this report we demonstrate that STAT-5 tyrosine-phosphorylation is a specific target of imatinib mesylate and Ara-C. Our results suggest that, in combination therapy, inhibition of STAT-5 tyrosine-phosphorylation may be responsible for synergistic or additive effects on BCR-ABL-positive cells.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

References

  1. Nowell PC, Hungerford DA . A minute chromosome in human chronic granulocytic leukemia. Science 1960; 132: 1497.

    Google Scholar 

  2. Epner DE, Koeffler HP . Molecular genetics of advances in chronic myelogenous leukemia. Ann Intern Med 1990; 113: 3–9.

    Article  CAS  PubMed  Google Scholar 

  3. Shtivelman E, Lifshitz B, Gale RP, Roe BA, Canaani E . Alternative splicing of RNAs transcribed from the human abl gene and from the bcr-abl fused gene. Cell 1986; 27: 277–284.

    Article  Google Scholar 

  4. Clark SS, McLaughlin J, Timmons M, Pendergast AM, Ben-Neria Y, Dow LW et al. Expression of a distinctive BCR-ABL oncogene in Ph1-positive acute lymphocytic leukemia (ALL). Science 1988; 238: 775–777.

    Article  Google Scholar 

  5. Rowley JD . A new consistent chromosomal abnormality in chronic myelogenous leukemia identified by quinacrine fluorescence and Giemsa staining. Nature 1973; 243: 290–293.

    Article  CAS  PubMed  Google Scholar 

  6. Sirard C, Laneuville P, Dick JE . Expression of bcr-abl abrogates factor-dependent growth of human hematopoietic M07E cells by an autocrine mechanism. Blood 1994; 83: 1575–1585.

    CAS  PubMed  Google Scholar 

  7. Skorski T, Nieborowska-Skorska M, Wlodarski P, Wasik M, Trotta R, Kanakaraj P et al. The SH3 domain contributes to BCR/ABL-dependent leukemogenesis in vivo: role in adhesion, invasion and homing. Blood 1998; 91: 406–418.

    CAS  PubMed  Google Scholar 

  8. Bedi A, Zehnbauer BA, Barberand JP, Sharkis SJ, Jones RJ . Inhibition of apoptosis by BCR-ABL in chronic myeloid leukemia. Blood 1994; 83: 2038–2044.

    CAS  PubMed  Google Scholar 

  9. McGahon A, Bissonnette R, Schmitt M, Cotter KM, Green DR, Cotter TG . BCR/ABL maintains resistance of chronic myelogenous leukemia cells to apoptotic cell death. Blood 1994; 83: 1179–1187.

    CAS  PubMed  Google Scholar 

  10. Daley GQ, Van Etten RA, Baltimore D . Induction of chronic myelogenous leukaemia in mice by the p210bcr/abl gene of the Philadelphia chromosome. Science 1990; 247: 824–830.

    Article  CAS  PubMed  Google Scholar 

  11. Heisterkamp N, Jenster G, ten Hoeve J, Zovich D, Pattengale PK, Groffen J . Acute leukaemia in bcr/abl transgenic mice. Nature 1990; 344: 251–253.

    Article  CAS  PubMed  Google Scholar 

  12. Mandanas RA, Leibowitz DS, Gharehbaghi K, Tauchi T, Burgess GS, Miyazawa K et al. Role of p21 RAS in p210 bcr-abl transformation of murine myeloid cells. Blood 1993; 82: 1838–1847.

    CAS  PubMed  Google Scholar 

  13. Skorski T, Bellacosa A, Nieborowska-Skorska M, Majewski M, Martinez R, Choi JK et al. Transformation of hematopoietic cells by BCR/ABL requires activation of a PI-3k/Akt-dependent pathway. EMBO J 1997; 16: 6151–6161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Raitano AB, Halpern JR, Hambuch TM, Sawyers CL . The Bcr-Abl leukemia oncogene activates Jun kinase and requires Jun for transformation. Proc Natl Acad Sci USA 1995; 92: 11746–11750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sawyers CL, Callahan W, Witte ON . Dominant negative MYC blocks transformation by ABL oncogenes. Cell 1992; 70: 901–910.

    Article  CAS  PubMed  Google Scholar 

  16. Carlesso N, Frank DA, Griffin JD . Tyrosyl phosphorylation and DNA binding activity of signal transducers and activators of transcription (STAT) proteins in hematopoietic cell lines transformed by Bcr/Abl. J Exp Med 1996; 183: 811–820.

    Article  CAS  PubMed  Google Scholar 

  17. Ilaria Jr RL, Van Etten RA . P210 and P190 (BCR/ABL) induce the tyrosine phosphorylation and DNA binding activity of multiple specific STAT family members. J Biol Chem 1996; 271; 31704–31710.

    Article  CAS  PubMed  Google Scholar 

  18. Nieborowska-Skorska M, Wasik MA, Slupianek A, Salomoni P, Kitamura T, Calabretta B et al. Signal transducer and activator of transcription (STAT)5 activation by BCR/ABL is dependent on intact Src homology (SH)3 and SH2 domains of BCR/ABL and is required for leukemogenesis. J Exp Med 1999; 189: 1229–1242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mui AL, Wakao H, O'Farrell AM, Harada N, Miyajima A . Interleukin-3, granulocyte–macrophage colony stimulating factor and interleukin-5 transduce signals through two STAT5 homologs. EMBO J 1995; 14: 1166–1175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wakao H, Harada N, Kitamura T, Mui AL, Miyajima A . Interleukin2 and erythropoietin activate STAT5/MGF via distinct pathways. EMBO J 1995; 14: 2527–2535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ihle JN . STAT's: signal transducers and activators of transcription. Cell 1996; 84: 331–334.

    Article  CAS  PubMed  Google Scholar 

  22. Moriggl R, Gouilleux-Gruart V, Jahne R, Berchthold S, Gartmann C, Liu X et al. Deletion of the carboxyl-terminal transactivation domain of MGF-Stat5 results in sustained DNA binding and a dominant negative phenotype. Mol Cell Biol 1996; 16: 5691–5700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Matsumoto A, Masuhara M, Mitsui K, Yokouchi M, Ohtsubo M, Misawa H et al. CIS, a cytokine inducible SH2 protein, is a target of the JAK-STAT5 pathway and modulates STAT5 activation. Blood 1997; 89: 3148–3154.

    CAS  PubMed  Google Scholar 

  24. Socolovsky M, Fallon AE, Wang S, Brugnara C, Lodish HF . Fetal anemia and apoptosis of red cell progenitors and Stat5a−/−5b/− mice: a direct role for Stat5 in Bcl-X(L) induction. Cell 1999; 98: 181–191.

    Article  CAS  PubMed  Google Scholar 

  25. Horita M, Andreu EJ, Benito A, Arbona C, Sanz C, Benet I et al. Blockade of the Bcr-Abl kinase activity induces apoptosis of chronic myelogenous leukemia cells by suppressing signal transducer and activator of transcription 5-dependent expression of Bcl-xL. J Exp Med 2000; 191: 977–984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Buchdunger E, Zimmermann J, Mett H, Meyer T, Muller M, Druker BJ et al. Inhibition of the Abl protein-tyrosine kinase in vitro and in vivo by a 2-phenylaminopyrimidine derivative. Cancer Res 1996; 56: 100–104.

    CAS  PubMed  Google Scholar 

  27. Druker BJ, Tamura S, Buchdunger E, Ohno S, Segal GM, Fanning S et al. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med 1996; 2: 561–566.

    Article  CAS  PubMed  Google Scholar 

  28. Druker BJ, Talpaz M, Resta DJ, Peng B, Buchdunger E, Ford JM et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 2001; 344:1031–1037.

    Article  CAS  PubMed  Google Scholar 

  29. Druker BJ, Sawyers CL, Kantarjian H, Resta DJ, Reese SF, Ford JM et al. Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N Engl J Med 2001; 344: 1038–1042.

    Article  CAS  PubMed  Google Scholar 

  30. Mahon FX, Deininger MW, Schultheis B, Chabrol J, Reiffers J, Goldman JM et al. Selection and characterization of BCR-ABL positive cell lines with differential sensitivity to the tyrosine kinase inhibitor STI571: diverse mechanisms of resistance. Blood 2000; 96: 1070–1079.

    CAS  PubMed  Google Scholar 

  31. Haque SJ, van der Kuip H, Kumar A, Aulitzky WE, Rutherford MN, Huber C et al. Overexpression of mouse p140 subunit of replication factor C accelerates cellular proliferation. Cell Growth Differ 1996; 7: 319–326.

    CAS  Google Scholar 

  32. Van der Kuip H, Carius B, Haque SJ, Williams BR, Huber C, Fischer T . The DNA-binding subunit p140 of replication factor C is upregulated in cycling cells and associates with G1 phase cell cycle regulatory proteins. J Mol Med 1999; 77: 386–392.

    Article  CAS  PubMed  Google Scholar 

  33. Kindler T, Meyer RG, Fischer T . BCR-ABL as a target for novel therapeutic interventions. Expert Opin Ther Targets 2002; 6: 85–101.

    Article  CAS  PubMed  Google Scholar 

  34. Deininger MW, Goldman JM, Lydon N, Melo JV . The tyrosine kinase inhibitor CGP57148B selectively inhibits the growth of BCR-ABL-positive cells. Blood 1997; 90: 3691–3698.

    CAS  PubMed  Google Scholar 

  35. Wilson-Rawls J, Liu J, Laneuville P, Arlinghaus RB . P210 Bcr-Abl interacts with the interleukin-3 beta c subunit and constitutively activates Jak2. Leukemia 1997; 11: 428–431.

    PubMed  Google Scholar 

  36. Rheaume E, Cohen LY, Uhlmann F, Lazure C, Alam A, Hurwitz J et al. The large subunit of replication factor C is a substrate for caspase-3 in vitro and is cleaved by a caspase-3-like protease during Fas-mediated apoptosis. EMBO J 1997; 16: 6346–6354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Perry DK, Smyth MJ, Stennicke HR, Salvesen GS, Duriez P, Poirier GG et al. Zinc is a potent inhibitor of the apoptotic protease caspase-3. A novel target for zinc in the inhibition of apoptosis. J Biol Chem 1997; 272: 18530–18533.

    Article  CAS  PubMed  Google Scholar 

  38. Fang G, Kim CN, Perkins CL, Ramadevi N, Winton E, Wittmann S et al. CGP57148B (STI-571) induces differentiation and apoptosis and sensitizes Bcr-Abl-positive human leukemia cells to apoptosis due to antileukemic drugs. Blood 2000; 96: 2246–2253.

    CAS  PubMed  Google Scholar 

  39. Thiesing JT, Ohno-Jones S, Kolibaba KS, Druker BJ . Efficacy of STI571, an abl tyrosine kinase inhibitor, in conjunction with other antileukemic agents against bcr-abl-positive cells. Blood 2000; 96: 3195–3199.

    CAS  PubMed  Google Scholar 

  40. Kano Y, Akuktsu M, Tsunoda S, Mano H, Sato Y, Honma Y, Furukawa Y . In vitro cytotoxic effects of a tyrosine kinase inhibitor STI571 in combination with commonly used antileukemic agents. Blood 2001; 97: 1999–2007.

    Article  CAS  PubMed  Google Scholar 

  41. Frank DA, Mahajan S, Ritz J . Fludarabine-induced immunosuppression is associated with inhibition of STAT1 signaling. Nat Med 1999; 5: 444–447.

    Article  CAS  PubMed  Google Scholar 

  42. Lionberger JM, Wilson MB, Smithgall TE . Transformation of myeloid leukemia cells to cytokine independence by Bcr-Abl is suppressed by kinase-defective Hck. J Biol Chem 2000; 275: 18581–18585.

    Article  CAS  PubMed  Google Scholar 

  43. Klejman A, Schreiner SJ, Nieborowska-Skorska M, Slupianek A, Wilson M, Smithgall TE et al. The Src family kinase Hck couples BCR/ABL to STAT5 activation in myeloid leukemia cells. EMBO J 2002; 21: 5766–5774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Aronica SM, Broxmeyer HE . Advances in understanding the postreceptor mechanisms of action of GM-CSF, G-CSF and Steel factor. Curr Opin Hematol 1996; 3: 185–190.

    Article  CAS  PubMed  Google Scholar 

  45. Mangi MH, Newland AC . Interleukin-3 in hematology and oncology: current state of knowledge and future directions. Cytokines Cell Mol Ther 1999; 5: 87–95.

    CAS  PubMed  Google Scholar 

  46. Sillaber C, Gesbert F, Frank DA, Sattler M, Griffin JD . STAT5 activation contributes to growth and viability in Bcr/Abl-transformed cells. Blood 2000; 95: 2118–2125.

    CAS  PubMed  Google Scholar 

  47. Gesbert F, Griffin JD . Bcr/Abl activates transcription of the Bcl-X gene through STAT5. Blood 2000; 96: 2269–2276.

    CAS  PubMed  Google Scholar 

  48. Packham G, White EL, Eischen CM, Young H, Parganas E, Ehle JN et al. Selective regulation of Bcl-XL by a Jak kinase-dependent pathway is bypassed in murine hematopoietic malignancies. Genes Dev 1998; 12: 2475–2487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Neshat MS, Raitano AB, Wang HG, Reed JC, Sawyers CL . The survival function of the Bcr-Abl oncogene is mediated by Bad-dependent and -independent pathways: roles for phosphatidyl-inositol 3-kinase and Raf. Mol Cell Biol 2000; 20: 1179–1186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Santos RSC, Dumon S, Mayeux P, Gisselbrecht S, Gouilleux F . Cooperation between STAT5 and phosphatidylinositol 3-kinase in the IL-3-dependent survival of a bone marrow derived cell line. Oncogene 2000; 19: 1164–1172.

    Article  Google Scholar 

  51. Oetzel C, Jonuleit T, Gotz A, Van der Kuip H, Michels H, Duyster J et al. The tyrosine kinase inhibitor CGP 57148 (STI 571) induces apoptosis in BCR-ABL-positive cells by down-regulating BCL-X. Clin Cancer Res 2000; 6: 1958–1968.

    CAS  PubMed  Google Scholar 

  52. Donato NJ, Wu JY, Zhang L, Kantarjian H, Talpaz M . Down-regulation of interleukin-3/granulocyte–macrophage colony-stimulating factor receptor beta-chain in BCR-ABL(+) human leukemic cells: association with loss of cytokine-mediated Stat-5 activation and protection from apoptosis after BCR-ABL inhibition. Blood 2001; 97: 2846–2853.

    Article  CAS  PubMed  Google Scholar 

  53. Yoshida K, Kharbanda S, Kufe D . Functional interaction between SHPTP1 and the Lyn tyrosine kinase in the apoptotic response to DNA damage. J Biol Chem 1999; 274: 34663–34668.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from ‘Deutsche Forschungsgemeinschaft (Fi 405/4-2)' and from Novartis Pharma AG, Nürnberg, Germany.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kindler, T., Breitenbuecher, F., Kasper, S. et al. In BCR-ABL-positive cells, STAT-5 tyrosine-phosphorylation integrates signals induced by imatinib mesylate and Ara-C. Leukemia 17, 999–1009 (2003). https://doi.org/10.1038/sj.leu.2402940

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402940

Keywords

This article is cited by

Search

Quick links