Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Spotlight
  • Published:

Resistance of Philadelphia-chromosome positive leukemia towards the kinase inhibitor imatinib (STI571, Glivec): a targeted oncoprotein strikes back

Abstract

Cancer research within the last decades elucidated signaling pathways and identified genes and proteins that lead or contribute to malignant transformation of a cell. Discovery of the Bcr–Abl oncoprotein as the molecular abnormality causing chronic myeloid leukemia (CML) paved the way for the development of a targeted anticancer therapy. The substantial activity of imatinib mesylate (STI571, Glivec) in CML and Philadelphia (Ph)-chromosome positive acute lymphoblastic leukemia (Ph+ ALL) changed the therapeutic approach to Ph+ leukemia and rang the bell for a new era of anticancer treatment. However, when the phenomenon of relapse occurred despite continued imatinib treatment, we had to learn the lesson that imatinib can select for a resistant disease clone. If such a clone still depends on Bcr–Abl, it either carries a BCR–ABL point mutation that prevents binding of the drug or expresses the fusion protein at high levels. Alternatively, leukemia cells that harbor secondary genetic alterations resulting in Bcr–Abl-independent proliferation are selected for their growth advantage in the presence of imatinib. Point mutations in the BCR–ABL kinase domain prevent binding of imatinib but still allow binding of ATP, thus retaining Bcr–Abl kinase activity. Mutated BCR–ABL is frequently detected in cases of imatinib-resistant Ph+ leukemia and therefore represents the main challenge for the investigation of alternative strategies to either overcome resistance or to prevent the emergence of a resistant leukemic clone.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

References

  1. Nowell PC, Hungerford DA . A minute chromosome in human granulocytic leukaemia. Science 1960; 132: 1497–1501.

    Google Scholar 

  2. Rowley JD . A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine flourescence and Giemsa staining. Nature 1973; 243: 290–293.

    CAS  PubMed  Google Scholar 

  3. Faderl S, Talpaz M, Estrov Z, O'Brien S, Kurzrock R, Kantarjian HM . The biology of chronic myeloid leukaemia. N Engl J Med 1999; 341: 164–172.

    Article  CAS  PubMed  Google Scholar 

  4. Sawyers CL . Chronic myeloid leukaemia. N Engl J Med 1999; 340: 1330–1340.

    Article  CAS  PubMed  Google Scholar 

  5. Daley GQ, Van Etten RA, Baltimore D . Induction of chronic myelogenous leukaemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. Science 1990; 247: 824–830.

    Article  CAS  PubMed  Google Scholar 

  6. Lugo TG, Pendergast AM, Muller AJ, Witte ON . Tyrosine kinase activity and transformation potency of bcr–abl oncogene products. Science 1990; 247: 1079–1082.

    Article  CAS  PubMed  Google Scholar 

  7. Zimmermann J, Buchdunger E, Mett H, Meyer T, Lydon NB, Traxler P . (Phenylamino)pyrimidine (PAP) derivatives: a new class of potent and highly selective PDGF-receptor autophosphorylation inhibitors. Bioorg Med Chem Lett 1996; 6: 1221–1226.

    Article  CAS  Google Scholar 

  8. Zimmermann J, Buchdunger E, Mett H, Meyer T, Lydon NB . Potent and selective inhibitors of the ABL-kinase: phenylaminopyrimidine (PAP) derivatives. Bioorg Med Chem Lett 1997; 7: 187–192.

    Article  CAS  Google Scholar 

  9. Druker BJ, Lydon NB . Lessons learned from the development of an abl tyrosine kinase inhibitor for chronic myelogenous leukemia. J Clin Invest 2000; 105: 3–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Buchdunger E, Cioffi CL, Law N, Stover D, Ohno-Jones S, Druker BJ et al. Abl protein-tyrosine kinase inhibitor STI571 inhibits in vitro signal transduction mediated by c-kit and platelet-derived growth factor receptors. J Pharmacol Exp Ther 2000; 295: 139–145.

    CAS  PubMed  Google Scholar 

  11. Heinrich MC, Griffith DJ, Druker BJ, Wait CL, Ott KA, Zigler AJ . Inhibition of c-kit receptor tyrosine kinase activity by STI 571, a selective tyrosine kinase inhibitor. Blood 2000; 96: 925–932.

    CAS  PubMed  Google Scholar 

  12. Okuda K, Weisberg E, Gilliland DG, Griffin JD . ARG tyrosine kinase activity is inhibited by STI571. Blood 2001; 97: 2440–2448.

    Article  CAS  PubMed  Google Scholar 

  13. Druker BJ, Tamura S, Buchdunger E, Ohno S, Segal GM, Fanning S et al. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr–Abl positive cells. Nat Med 1996; 2: 561–566.

    Article  CAS  PubMed  Google Scholar 

  14. Beran M, Cao X, Estrov Z, Jeha S, Jin G, O'Brien S et al. Selective inhibition of cell proliferation and BCR–ABL phosphorylation in acute lymphoblastic leukemia cells expressing Mr 190,000 BCR–ABL protein by a tyrosine kinase inhibitor (CGP 57148). Clin Cancer Res 1998; 4: 1661–1672.

    CAS  PubMed  Google Scholar 

  15. Carroll M, Ohno-Jones S, Tamura S, Buchdunger E, Zimmermann J, Lydon NB et al. CGP 57148, a tyrosine kinase inhibitor, inhibits the growth of cells expressing BCR–ABL, TEL–ABL, and TEL–PDGFR fusion proteins. Blood 1997; 90: 4947–4952.

    CAS  PubMed  Google Scholar 

  16. Heinrich MC, Wait CL, Yee KW, Griffith DJ . STI571 inhibits the kinase activity of wild type and juxtamembrane c-Kit mutants but not the exon 17 D816V mutation associated with mastocytosis. Blood 2000; 96: 173b (Abstr.).

    Google Scholar 

  17. Buchdunger E, Zimmermann J, Mett H, Meyer T, Muller M, Druker BJ, Lydon NB . Inhibition of the Abl protein-tyrosine kinase in vitro and in vivo by a 2-phenylamin pyrimidine derivative. Cancer Res 1996; 56: 100–104.

    CAS  PubMed  Google Scholar 

  18. le Coutre P, Mologni L, Cleris L, Marchesi E, Buchdunger E, Giardini R et al. In vivo eradication of human BCR/ABL-positive leukemia cells with an ABL kinase inhibitor. J Natl Cancer Inst 1999; 91: 163–168.

    Article  CAS  PubMed  Google Scholar 

  19. Druker BJ, Talpaz M, Resta DJ, Peng B, Buchdunger E, Ford JM et al. Efficacy and safety of a specific inhibitor of the BCR–ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 2001; 344:1031–1037.

    Article  CAS  PubMed  Google Scholar 

  20. Druker BJ, Sawyers CL, Kantarjian H, Resta DJ, Fernandes Reese S, Ford JM et al. Activity of a specific inhibitor of the BCR–ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N Engl J Med 2001; 344: 1038–1042.

    Article  CAS  PubMed  Google Scholar 

  21. Peng B, Hayes M, Racine-Poon A, Druker BJ, Talpaz M, Sawyers CL et al. Clinical investigation of the PK/PD relationship for Glivec (STI571): a novel inhibitor of signal transduction. Proc Am Soc Clin Oncol 2001; 20: 280 (Abstr.).

    Google Scholar 

  22. Kantarjian HM, Sawyers CL, Hochhaus A, Guilhot F, Schiffer C, Gambacorti-Passerini C et al. Hematologic and cytogenetic responses to imatinib mesylate in chronic myelogenous leukemia. N Engl J Med 2002; 346: 645–652.

    Article  CAS  PubMed  Google Scholar 

  23. Talpaz M, Silver RT, Druker BJ, Goldmann JM, Gambacorti-Passerini C, Guilhot F et al. Imatinib induces durable hematologic and cytogenetic responses in patients with accelerated phase chronic myeloid leukemia: results of a Phase 2 study. Blood 2002; 99: 1928–1937.

    Article  CAS  PubMed  Google Scholar 

  24. Sawyers CL, Hochhaus A, Feldman E, Goldman JM, Miller CB, Ottmann OG et al. Imatinib induces hematologic and cytogenetic responses in patients with chronic myeloid leukemia in myeloid blast crisis: results of a Phase II study. Blood 2002; 99: 3530–3539.

    Article  CAS  PubMed  Google Scholar 

  25. Ottmann OG, Druker BJ, Sawyers CL, Goldman JM, Reiffers J, Silver RT et al. A phase 2 study of imatinib in patients with relapsed or refractory Philadelphia chromosome-positive acute lymphoid leukemias. Blood 2002; 100: 1965–1971.

    Article  CAS  PubMed  Google Scholar 

  26. Canitrot Y, Lautier D, Laurent G, Frechet M, Ahmet A, Turhan AG et al. Mutator phenotype of BCR–ABL transfected cell lines and its association with enhanced expression of DNA polymerase beta. Oncogene 1999; 18: 2676–2680.

    Article  CAS  PubMed  Google Scholar 

  27. Salloukh HF, Launeville P . Increase in mutant frequencies in mice expressing the BCR–ABL activated tyrosine kinase. Leukemia 2000; 14: 1401–1404.

    Article  CAS  PubMed  Google Scholar 

  28. Ohyashiki K, Iwama H, Tauchi T, Shimamoto T, Hayashi S, Ando K et al. Telomere dynamics and genetic instability in disease progression of chronic myeloid leukemia. Leukemia Lymphoma 2000; 40: 49–56.

    Article  CAS  PubMed  Google Scholar 

  29. Blagosklonny MV . STI-571 must select for drug-resistant cells but ‘no cell breathes fire out of its nostrils like a dragon. Leukemia 2002; 16: 570–572.

    Article  CAS  PubMed  Google Scholar 

  30. le Coutre P, Tassi E, Varella-Garcia M, Barni R, Mologni L, Cabrita G et al. Induction of resistance to the Abelson inhibitor STI571 in human leukemia cells through gene amplification. Blood 2000; 95: 1758–1766.

    CAS  PubMed  Google Scholar 

  31. Mahon FX, Deininger MW, Schultheis B, Chabrol J, Reiffers J, Goldman JM et al. Selection and characterization of BCR–ABL positive cell lines with differential sensitivity to the tyrosine kinase inhibitor STI571: diverse mechanisms of resistance. Blood 2000; 96: 1070–1079.

    CAS  PubMed  Google Scholar 

  32. Weisberg E, Griffin JD . Mechanism of resistance to the ABL tyrosine kinase inhibitor STI571 in BCR/ABL-transformed hematopoietic cell lines. Blood 2000; 95: 3498–3505.

    CAS  PubMed  Google Scholar 

  33. Kuo MT, Sen S, Hittelman WN, Hsu TC . Chromosomal fragile sites and DNA amplification in drug resistant cells. Biochem Pharmacol 1998; 56: 7–13.

    Article  CAS  PubMed  Google Scholar 

  34. Tipping AJ, Mahon FX, Lagarde V, Goldman JM, Melo JV . Restoration of sensitivity to STI571-resistant chronic myeloid leukemia cells. Blood 2001; 98: 3864–3867.

    Article  CAS  PubMed  Google Scholar 

  35. Ricci C, Scappini B, Divoky V, Gatto S, Onida F, Verstovsek S et al. Mutation in the ATP-binding pocket of the ABL kinase domain in an STI571-resistant BCR/ABL-positive cell line. Cancer Res 2002; 62: 5995–5998.

    CAS  PubMed  Google Scholar 

  36. Gorre ME, Mohammed M, Ellwood K, Hsu N, Paquette R, Rao PN, Sawyers, CL . Clinical resistance to STI-571 cancer therapy caused by BCR–ABL gene mutation or amplification. Science 2001; 293: 876–880.

    Article  CAS  PubMed  Google Scholar 

  37. Schindler T, Bornmann W, Pellicena P, Miller WT, Clarkson B, Kuriyan J . Structural mechanism for STI-571 inhibition of Abelson tyrosine kinase. Science 2000; 289:1938–1942.

    Article  CAS  PubMed  Google Scholar 

  38. Barthe C, Cony-Makhoul P, Melo JV, Reiffers J, Mahon FX . Roots of clinical resistance to STI-571 cancer therapy. Science 2001; 293: 2163a.

    Article  Google Scholar 

  39. Hochhaus A, Kreil S, Corbin A, La-Rosée P, Lahaye T, Berger U et al. Roots of clinical resistance to STI-571 cancer therapy. Science 2001; 293: 2163a.

    Article  Google Scholar 

  40. Gorre M, Shah N, Ellwood K, Nicoll J, Sawyers CL . Roots of clinical resistance to STI-571 cancer therapy. Science 2001; 293: 2163a.

    Article  Google Scholar 

  41. Branford S, Rudzki Z, Walsh S, Grigg A, Arthur C, Taylor K et al. High frequency of point mutations clustered within the adenosine triphosphate–binding region of BCR/ABL in patients with chronic myeloid leukemia or Ph-positive acute lymphoblastic leukemia who develop imatinib (STI571) resistance. Blood 2002; 99: 3472–3475.

    Article  CAS  PubMed  Google Scholar 

  42. von Bubnoff N, Schneller F, Peschel C, Duyster J . BCR–ABL gene mutations in relation to clinical resistance of Philadelphia-chromosome-positive leukaemia to STI571: a prospective study. Lancet 2002; 359: 487–491.

    Article  CAS  PubMed  Google Scholar 

  43. von Bubnoff N, Schneller F, Peschel C, Duyster J . Different Bcr–Abl gene mutations can cause clinical resistance of Philadelphia-positive leukemia towards STI571. Blood 2001; 98: 770a (Abstr.).

    Google Scholar 

  44. Hofmann WK, Jones LC, Lemp NA, de Vos S, Gschaidmeier H, Hoelzer D et al. Ph(+) acute lymphoblastic leukemia resistant to the tyrosine kinase inhibitor STI571 has a unique BCR–ABL gene mutation. Blood 2002; 99: 1860–1862.

    Article  PubMed  Google Scholar 

  45. Roche-Lestienne C, Soenen-Cornu V, Grardel-Duflos N, Lai JL, Philippe N, Facon T et al. Several types of mutations of the Abl gene can be found in chronic myeloid leukemia patients resistant to STI571, and they can pre-exist to the onset of treatment. Blood 2002; 100: 1014–1018.

    Article  CAS  PubMed  Google Scholar 

  46. Roumiantsev S, Shah NP, Gorre ME, Nicoll J, Brasher BB, Sawyers CL et al. Clinical resistance to the kinase inhibitor STI-571 in chronic myeloid leukemia by mutation of Tyr-253 in the Abl kinase domain P-loop. Proc Natl Acad Sci USA 2002; 99: 10700–10705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Shah NP, Nicoll JM, Nagar B, Gorre ME, Paquette RL, Kuriyan J et al. Multiple BCR–ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crisis chronic myeloid leukemia. Cancer Cell 2002; 2: 117–125.

    Article  CAS  PubMed  Google Scholar 

  48. Hochhaus A, Kreil S, Corbin AS, La Rosée P, Müller MC, Lahaye T et al. Molecular and chromosomal mechanisms of resistance to imatinib (STI571) therapy. Leukemia 2002; 16: 2190–2196.

    Article  CAS  PubMed  Google Scholar 

  49. Druker BJ, Mauro MJ . STI571: targeting BCR–ABL as therapy for CML. Oncologist 2001; 6: 233–238.

    Article  PubMed  Google Scholar 

  50. Corbin AS, Buchdunger E, Furet P, Druker BJ . Analysis of the structural basis of specifity of inhibition of the Abl kinase by STI571. J Biol Chem 2002; 277: 32214–32219, Manuscript M111525200, published online June 20.

    Article  CAS  PubMed  Google Scholar 

  51. von Bubnoff N, Gschaidmeier H, Schneller F, Peschel C, Duyster J . Differential sensitivity of BCR–ABL gene mutations responsible for clinical resistance towards glivec (STI571) and alternate kinase inhibitors. Onkologie 2002; 25: 6 (Abstr.).

    Google Scholar 

  52. Manley PW, Cowan-Jacob SW, Fabbro D, Fendrich G, Furet P, Guez V et al. Molecular interactions between Glivec and isoforms of the c-Abl kinase. Proc Am Assoc Cancer Res 2002; 4196 (Abstr.).

  53. Nagar B, Bornmann WG, Pellicena P, Schindler T, Veach DR, Miller WT et al. Crystal structures of the kinase domain of c-Abl in complex with the small molecule inhibitors PD173955 and Imatinib (STI-571). Cancer Res 2002; 62: 4236–4243.

    CAS  PubMed  Google Scholar 

  54. Warmuth M, Simon N, Mathes R, Mitina O, Forster K, Moarefi I et al. Point mutations at molecular gatekeeper positions of ABL confer STI571- but not PP1-resistance to Bcr–Abl-expressing cell lines. Blood 2001; 98: 770a.

    Google Scholar 

  55. Allen PB, Wiedemann M . An activating mutation in the ATP binding site of the ABL kinase domain. J Biol Chem 1996; 271: 19585–19591.

    Article  CAS  PubMed  Google Scholar 

  56. Roumiantsev S, Brasher BB, Van Etten RA . A point mutation in the ABL catalytic domain induces resistance to the tyrosine kinase inhibitor STI571. Blood 2000; 16: 470a.

    Google Scholar 

  57. Capdeville R, Buchdunger E, Zimmermann J, Matter A . Glivec (STI571, imatinib), a rationally developed, targeted anticancer drug. Nat rev 2002; 1: 493–502.

    CAS  Google Scholar 

  58. Gambacorti-Passerini C, Barni R, le Coutre P, Zucchetti M, Cabrita G, Cleris L et al. Role of alpha1 acid glycoprotein in the in vivo resistance of human BCR–ABL (+) leukemia cells to the abl inhibitor STI571. J Natl Cancer Inst 2000; 92: 1641–1650.

    Article  CAS  PubMed  Google Scholar 

  59. le Coutre P, Kreuzer KA, Na I-K, Lupberger J, Holdhoff M, Appelt C et al. Determination of α-1 acid glycoprotein in patients with Ph+ chronic myeloid leukemia during the first 13 weeks of therapy with STI571. Blood Cells Mol Dis 2002; 28: 75–85.

    Article  PubMed  Google Scholar 

  60. Jorgensen HG, Elliott MA, Allan EK, Carr CE, Holyoake TL, Smith KD . α-1 acid glycoprotein expressed in the plasma of chronic myeloid leukemia patients does not mediate significant in vitro resistance to STI571. Blood 2002; 99: 713–715.

    Article  CAS  PubMed  Google Scholar 

  61. Wolff NC, Ilaria RL . Establishment of a murine model for therapy-treated chronic myelogenous leukemia using the tyrosine kinase inhibitor STI571. Blood 2001; 98: 2808–2816.

    Article  CAS  PubMed  Google Scholar 

  62. Miething C, Grundler R, Hoepfl J, Mugler C, Gschaidmeier H . Mice with a CML-like disease relapse with ALL under STI571 treatment. Exp Hematol 2002; 30: 96a.

    Google Scholar 

  63. Luzzatto L, Melo JV . Acquired resistance to imatinib mesylate: selection for pre-existing mutant cells. Blood 2002; 100: 1105.

    Article  CAS  PubMed  Google Scholar 

  64. Thiesing JT, Ohno-Jones S, Kolibaba KS, Druker BJ . Efficacy of STI571, an Abl tyrosine kinase inhibitor, in conjunction with other antileukemic agents against Bcr–Abl-positive cells. Blood 2000; 96: 3195–3199.

    CAS  PubMed  Google Scholar 

  65. Topaly J, Zeller WJ, Fruehauf S . Synergistic activity of the new Abl-specific tyrosine kinase inhibitor STI571 and chemotherapeutic drugs on BCR–ABL-positive chronic myelogenous leukemia cells. Leukemia 2001; 15: 342–347.

    Article  CAS  PubMed  Google Scholar 

  66. Kano Y, Akutsu M, Tsunoda S, Mano H, Sato Y, Honma Y et al. In vitro cytotoxic effects of a tyrosine kinase inhibitor STI571 in combination with commonly used antileukemic agents. Blood 2001; 97: 1999–2007.

    Article  CAS  PubMed  Google Scholar 

  67. La Rosée P, O'Dwyer ME, Druker BJ . Insights from pre-clinical studies for new combination treatment regimens with the Bcr–Abl kinase inhibitor imatinib mesylate (Gleevec/Glivec) in chronic myelogenous leukemia: a translational perspective. Leukemia 2002; 16: 1213–1219.

    Article  PubMed  Google Scholar 

  68. Mow BM, Chandra J, Svingen PA, Hallgren CG, Weisberg E, Kottke TJ et al. Effects of the Bcr/abl kinase inhibitors STI571 and adaphostin (NSC 680410) on chronic myelogenous leukemia cells in vitro. Blood 2002; 99: 664–671.

    Article  CAS  PubMed  Google Scholar 

  69. An WG, Schulte TW, Neckers LM . The heat shock protein 90 antagonist geldanamycin alters chaperone association with p210bcr–abl and v-src proteins before their degradation by the proteasome. Cell Growth Differ 2000; 11: 355–360.

    CAS  PubMed  Google Scholar 

  70. Blagosklonny MV, Fojo T, Bhalla KN, Kim JS, Trepel JB, Figg WD et al. The Hsp90 inhibitor geldanamycin selectively sensitizes Bcr–Abl- expressing leukemia cells to cytotoxic chemotherapy. Leukemia 2001; 15: 1537–1543.

    Article  CAS  PubMed  Google Scholar 

  71. Nimmanapalli R, O'Bryan E, Bhalla K . Geldanamycin and its analogue 17-allylamino-17-demethoxygeldanamycin lowers Bcr–Abl levels and induces apoptosis and differentiation of Bcr- Abl-positive human leukemic blasts. Cancer Res 2001; 61: 1799–1804.

    CAS  PubMed  Google Scholar 

  72. Gorre ME, Ellwood-Yen K, Chiosis G, Rosen N, Sawyers CL . BCR–ABL point mutants isolated from patients with imatinib mesylate-resistant chronic myeloid leukemia remain sensitive to inhibitors of the BCR–ABL chaperone heat shock protein 90. Blood 2002; 100: 3041–3044.

    Article  CAS  PubMed  Google Scholar 

  73. Peters DG, Hoover RR, Gerlach MJ, Koh EY, Zhang H, Choe K et al. Activity of the farnesyl protein transferase inhibitor SCH66336 against BCR/ABL-induced murine leukemia and primary cells from patients with chronic myeloid leukemia. Blood 2001; 97: 1404–1412.

    Article  CAS  PubMed  Google Scholar 

  74. Ashar HR, James L, Gray K, Carr D, Black S, Armstrong L et al. Farnesyl transferase inhibitors block the farnesylation of CENP-E and CENP-F and alter the association of CENP-E with the microtubules. J Biol Chem 2000; 275: 30451–30457.

    Article  CAS  PubMed  Google Scholar 

  75. Wang E, Casciano CN, Clement RP, Johnson WW . The farnesyl protein transferase inhibitor SCH66336 is a potent inhibitor of MDR1 product P-glycoprotein. Cancer Res 2001; 61: 7325–7329.

    Google Scholar 

  76. Reichert A, Heisterkamp N, Daley GQ, Groffen J . Treatment of Bcr/Abl-positive acute lymphoblastic leukemia in P190 transgenic mice with the farnesyl transferase inhibitor SCH66336. Blood 2001; 97: 1399–1403.

    Article  CAS  PubMed  Google Scholar 

  77. Hoover RR, Mahon FX, Melo JV, Daley GQ . Overcoming STI571 resistance with the farnesyl transferase inhibitor SCH66336. Blood 2002; 100: 1068–1071.

    Article  CAS  PubMed  Google Scholar 

  78. Thomas D, Cortes J, ÓBrien SM, Manero GG, Kurzrock R, Giles FJ et al. R115777, a farnesyl transferase inhibitor (FTI), has significant anti-leukemia activity in patients with chronic myeloid leukemia (CML). Blood 2001; 98: 727a.

    Article  Google Scholar 

  79. Szczylik C, Skorski T, Nicolaides NC, Manzella L, Malaguarnera L, Venturelli D et al. Selective inhibition of leukemia cell proliferation by BCR–ABL antisense oligodeoxynucleotides. Science 1991; 253: 562–565.

    Article  CAS  PubMed  Google Scholar 

  80. Skorski T, Nieborowska-Skorska M, Nicolaides NC, Szczylik C, Iversen P, Iozzo RV et al. Suppression of Philadelphia1 Leukemia cell growth in mice by BCR–ABL antisense oligodeoxynucleotide. Proc Natl Acad Sci USA 1994; 91: 4504–4508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. De Fabritiis P, Petti MC, Montefusco E, De Propris MS, Sala R, Bellucci R et al. BCR–ABL antisense oligodeoxynucleotide in vitro purging and autologous bone marrow transplantation for patients with chronic myelogenous leukemia in advanced phase. Blood 1998; 91: 3156–3162.

    CAS  PubMed  Google Scholar 

  82. Scherr M, Battmer K, Winkler T, Heidenreich O, Ganser A, Eder M . Specific inhibition of bcr–abl gene expression by small interfering RNA. Blood 2003; 101: 1566–1569, DOI 10.1182/blood-2002-06-1685, prepublished online september 26, 2002.

    Article  CAS  PubMed  Google Scholar 

  83. Zhao X, Ghaffari S, Lodish H, Malashkevich VN, Kim PS . Structure of the Bcr–Abl oncoprotein oligomerization domain. Nat Struct Biol 2002; 9:117–120.

    CAS  PubMed  Google Scholar 

  84. Vigneri P, Wang JY . Induction of apoptosis in chronic myelogenous leukemia cells through nuclear entrapment of BCR–ABL tyrosine kinase. Nat Med 2001; 7: 228–234.

    Article  CAS  PubMed  Google Scholar 

  85. Newlands ES, Rustin GJ, Brampton MH . Phase I trial of elactocin. Br J Cancer 1996; 74: 648–649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bubnoff, N., Peschel, C. & Duyster, J. Resistance of Philadelphia-chromosome positive leukemia towards the kinase inhibitor imatinib (STI571, Glivec): a targeted oncoprotein strikes back. Leukemia 17, 829–838 (2003). https://doi.org/10.1038/sj.leu.2402889

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402889

Keywords

This article is cited by

Search

Quick links