Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

High percentage of CD34-positive cells in autologous AML peripheral blood stem cell products reflects inadequate in vivo purging and low chemotherapeutic toxicity in a subgroup of patients with poor clinical outcome

Abstract

In this study, a high CD34% in autologous peripheral blood stem cell (PBSC) products from 71 AML patients was associated directly with a high relapse rate (P = 0.006) and inversely with disease-free survival (P = 0.003), irrespective whether patients were transplanted or not. The relapse rate at 12 months was 67% in a group with >0.8% CD34+ cells and 34% in a group with 0.8% CD34+ cells. Although the percentage of malignant CD34+ cells in the CD34+ compartment in the relapses of the first group was not high (median 8%), the total number of malignant cells as a percentage of WBC was about 13 times higher than for the patients remaining >12 months in remission. When all patients evaluable were taken together, this frequency of malignant cells correlated strongly with disease-free survival (P < 0.001). Both this massive mobilization of normal CD34+ cells and high frequency of malignant cells in the subgroup of patients with CD34 >0.8% and relapse within 12 months indicate an insufficient in vivo purging, as well as low chemotherapeutic bone marrow toxicity. This was confirmed by an inverse correlation between hypoplasia period after the induction therapy and CD34% in PBSC products (P < 0.002). It is concluded that a subgroup of patients has been identified that might benefit from a more intensive chemotherapeutic treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Burnett, AK, Goldstone, AH, Stevens, RM, Hann, IM, Rees, JK, Gray, RG & Wheatley, K. Randomised comparison of addition of autologous bone-marrow transplantation to intensive chemotherapy for acute myeloid leukaemia in first remission: results of MRC AML 10 trial. UK Medical Research Council Adult and Children's Leukaemia Working Parties. Lancet, (1998). 351, 700–708.

    Article  CAS  PubMed  Google Scholar 

  2. San Miguel, JF, Vidriales, MB, Lopez-Berges, C, Diaz-Mediavilla, J, Gutierrez, N, Canizo, C, Ramos, F, Calmuntia, MJ, Perez, JJ, Gonzalez, M & Orfao, A Early immunophenotypical evaluation of minimal residual disease in acute myeloid leukemia identifies different patient risk groups and may contribute to postinduction treatment stratification. Blood, (2001). 98, 1746–1751.

    Article  CAS  PubMed  Google Scholar 

  3. Venditti, A, Buccisano, F, Del Poeta, G, Maurillo, L, Tamburini, A, Cox, C, Battaglia, A, Catalano, G, Del Moro, B, Cudillo, L, Postorino, M, Masi, M & Amadori, S Level of minimal residual disease after consolidation therapy predicts outcome in acute myeloid leukemia. Blood, (2000). 96, 3948–3952.

    CAS  PubMed  Google Scholar 

  4. Reichle, A, Rothe, G, Krause, S, Zaiss, M, Ullrich, H, Schmitz, G & Andreesen, R Transplant characteristics: minimal residual disease and impaired megakaryocytic colony growth as sensitive parameters for predicting relapse in acute myeloid leukemia. Leukemia, (1999). 13, 1227–1234.

    Article  CAS  PubMed  Google Scholar 

  5. van Dongen, JJ, Szczepanski, T, de Bruijn, MA, van den Beemd, MW, de Bruin-Versteeg, S, Wijkhuijs, JM, Tibbe, GJ, van Gastel-Mol, EJ, Groeneveld, K & Hooijkaas, H Detection of minimal residual disease in acute leukemia patients. Cytok Mol Ther, (1996). 2, 121–133.

    CAS  Google Scholar 

  6. van der Pol, MA, Pater, JM, Feller, N, Westra, AH, van Stijn, A, Ossenkoppele, GJ, Broxterman, HJ & Schuurhuis, GJ Functional characterization of minimal residual disease for P-glycoprotein and multidrug resistance protein activity in acute myeloid leukemia. Leukemia, (2001). 15, 1554–1563.

    Article  CAS  PubMed  Google Scholar 

  7. Campana, D & Pui, CH Detection of minimal residual disease in acute leukemia: methodologic advances and clinical significance. Blood, (1995). 85, 1416–1434.

    CAS  PubMed  Google Scholar 

  8. Siena, S, Schiavo, R, Pedrazzoli, P & Carlo-Stella, C Therapeutic relevance of CD34 cell dose in blood cell transplantation for cancer therapy. J Clin Oncol, (2000). 18, 1360–1377.

    Article  CAS  PubMed  Google Scholar 

  9. Weaver, CH, Potz, J, Redmond, J, Tauer, K, Schwartzberg, LS, Kaywin, P, Drapkin, R, Grant, B, Unger, P, Allen, C, Longin, K, Zhen, B, Hazelton, B & Buckner, CD Engraftment and outcomes of patients receiving myeloablative therapy followed by autologous peripheral blood stem cells with a low CD34+ cell content. Bone Marrow Transplant, (1997). 19, 1103–1110.

    Article  CAS  PubMed  Google Scholar 

  10. Schulman, KA, Birch, R, Zhen, B, Pania, N & Weaver, CH Effect of CD34(+) cell dose on resource utilization in patients after high-dose chemotherapy with peripheral-blood stem-cell support. J Clin Oncol, (1999). 17, 1227

    Article  CAS  PubMed  Google Scholar 

  11. Vellenga, E, van Putten, WL, Boogaerts, MA, Daenen, SM, Verhoef, GE, Hagenbeek, A, Jonkhoff, AR, Huijgens, PC, Verdonck, LF, van der Lelie, J, Schouten, HC, Gmur, J, Wijermans, P, Gratwohl, A, Hess, U, Fey, MF & Lowenberg, B Peripheral blood stem cell transplantation as an alternative to autologous marrow transplantation in the treatment of acute myeloid leukemia?. Bone Marrow Transplant, (1999). 23, 1279–1282.

    Article  CAS  PubMed  Google Scholar 

  12. Grimwade, D, Walker, H, Oliver, F, Wheatley, K, Harrison, C, Harrison, G, Rees, J, Hann, I, Stevens, R, Burnett, A & Goldstone, A The importance of diagnostic cytogenetics on outcome in AML: analysis of 1,612 patients entered into the MRC AML 10 trial. The Medical Research Council Adult and Children's Leukaemia Working Parties. Blood, (1998). 92, 2322–2333.

    CAS  PubMed  Google Scholar 

  13. Sutherland, DR, Anderson, L, Keeney, M, Nayar, R & Chin-Yee, I The ISHAGE guidelines for CD34+ cell determination by flow cytometry. International Society of Hematotherapy and Graft Engineering. J Hematother, (1996). 5, 213–226.

    Article  CAS  PubMed  Google Scholar 

  14. Lacombe, F, Durrieu, F, Briais, A, Dumain, P, Belloc, F, Bascans, E, Reiffers, J, Boisseau, MR & Bernard, P Flow cytometry CD45 gating for immunophenotyping of acute myeloid leukemia. Leukemia, (1997). 11, 1878–1886.

    Article  CAS  PubMed  Google Scholar 

  15. Cheson, BD, Cassileth, PA, Head, DR, Schiffer, CA, Bennett, JM, Bloomfield, CD, Brunning, R, Gale, RP, Grever, MR & Keating, MJ Report of the National Cancer Institute-sponsored workshop on definitions of diagnosis and response in acute myeloid leukemia. J Clin Oncol, (1990). 8, 813–819.

    Article  CAS  PubMed  Google Scholar 

  16. Willemze, R, Sucia, S, Keating, S, Zittoun, R, de Witte, T, Belhabri, A, Amadori, S, Meloni, G, Rodts, P, Fibbe, WE & Mandelli, F The number of CD34 cells in cytokine mobilized peripheral blood stem cell grafts correlates with the risk of relapse; results of the EORTC-GIMEMA AML-10 trial. EBMT, (2001). (Abstr.)

  17. Drach, D, Zhao, S, Drach, J, Mahadevia, R, Gattringer, C, Huber, H & Andreeff, M Subpopulations of normal peripheral blood and bone marrow cells express a functional multidrug resistant phenotype. Blood, (1992). 80, 2729–2734.

    CAS  PubMed  Google Scholar 

  18. Del Poeta, G, Stasi, R, Venditti, A, Suppo, G, Aronica, G, Bruno, A, Masi, M, Tabilio, A & Papa, G Prognostic value of cell marker analysis in de novo acute myeloid leukemia. Leukemia, (1994). 8, 388–394.

    CAS  PubMed  Google Scholar 

  19. van den Heuvel-Eibrink, MM, van der, HB, te Boekhorst, PA, Pieters, R, Schoester, M, Lowenberg, B & Sonneveld, P MDR 1 expression is an independent prognostic factor for response and survival in de novo acute myeloid leukaemia. Br J Haematol, (1997). 99, 76–83.

    Article  CAS  PubMed  Google Scholar 

  20. San Miguel, JF, Martinez, A, Macedo, A, Vidriales, MB, Lopez-Berges, C, Gonzalez, M, Caballero, D, Garcia-Marcos, MA, Ramos, F, Fernandez-Calvo, J, Calmuntia, MJ, Diaz-Mediavilla, J & Orfao, A Immunophenotyping investigation of minimal residual disease is a useful approach for predicting relapse in acute myeloid leukemia patients. Blood, (1997). 90, 2465–2470.

    CAS  PubMed  Google Scholar 

  21. Campos, L, Rouault, JP, Sabido, O, Oriol, P, Roubi, N, Vasselon, C, Archimbaud, E, Magaud, JP & Guyotat, D High expression of bcl-2 protein in acute myeloid leukemia cells is associated with poor response to chemotherapy. Blood, (1993). 81, 3091–3096.

    CAS  PubMed  Google Scholar 

  22. Maung, ZT, MacLean, FR, Reid, MM, Pearson, AD, Proctor, SJ, Hamilton, PJ & Hall, AG The relationship between bcl-2 expression and response to chemotherapy in acute leukaemia. Br J Haematol, (1994). 88, 105–109.

    Article  CAS  PubMed  Google Scholar 

  23. Galmarini, CM, Graham, K, Thomas, X, Calvo, F, Rousselot, P, El Jafaari, A, Cros, E, Mackey, JR & Dumontet, C Expression of high Km 5′-nucleotidase in leukemic blasts is an independent prognostic factor in adults with acute myeloid leukemia. Blood, (2001). 98, 1922–1926.

    Article  CAS  PubMed  Google Scholar 

  24. Macedo, A, San Miguel, JF, Vidriales, MB, Lopez-Berges, MC, Garcia-Marcos, MA, Gonzalez, M, Landolfi, C & Orfao, A Phenotypic changes in acute myeloid leukaemia: implications in the detection of minimal residual disease. J Clin Pathol, (1996). 49, 15–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Baer, MR, Stewart, CC, Dodge, RK, Leget, G, Sule, N, Mrozek, K, Schiffer, CA, Powell, BL, Kolitz, JE, Moore, JO, Stone, RM, Davey, FR, Carroll, AJ, Larson, RA & Bloomfield, CD High frequency of immunophenotype changes in acute myeloid leukemia at relapse: implications for residual disease detection (Cancer and Leukemia Group B Study 8361). Blood, (2001). 97, 3574–3580.

    Article  CAS  PubMed  Google Scholar 

  26. Kokenberg, E, Sonneveld, P, Sizoo, W, Hagenbeek, A & Lowenberg, B Cellular pharmacokinetics of daunorubicin: relationships with the response to treatment in patients with acute myeloid leukemia. J Clin Oncol, (1988). 6, 802–812.

    Article  CAS  PubMed  Google Scholar 

  27. Gessner, T, Preisler, HD, Azarnia, N, Bolanowska, W, Vogler, WR, Grunwald, H, Joyce, R & Goldberg, J Plasma levels of daunorubicin metabolites and the outcome of ANLL therapy. Med Oncol Tumor Pharmacother, (1987). 4, 23–31.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We want to thank Drs Arne de Kreuk and Abel Thijs for their contribution to the statistical analyses, Gitta Evertse for helping to examine clinical data and Prof Dr Theo de Witte for his valuable suggestions.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feller, N., Schuurhuis, G., van der Pol, M. et al. High percentage of CD34-positive cells in autologous AML peripheral blood stem cell products reflects inadequate in vivo purging and low chemotherapeutic toxicity in a subgroup of patients with poor clinical outcome. Leukemia 17, 68–75 (2003). https://doi.org/10.1038/sj.leu.2402781

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402781

Keywords

This article is cited by

Search

Quick links