Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Flow cytometric follow-up of minimal residual disease in bone marrow gives prognostic information in children with acute lymphoblastic leukemia

Abstract

Using flow cytometry (FC) and live gate (LG) analysis we have followed levels of minimal residual disease (MRD) in the bone marrow (BM) of 70 consecutive patients with childhood acute lymphoblastic leukemia (59 B precursor ALL and 11 T-ALL) treated according to the Nordic (NOPHO-92) protocols. Thorough studies of B and T cell antigen expression patterns in normal BM performed during BIOMED 1 Concerted Action on MRD, made it possible to tailor individual protocols of marker combinations for follow-up in 97% of patients. In 12% of LG analyses, the numbers of cells exceeded 106 and in 82% exceeded 105, giving the sensitivity level of MRD detection 10−5 and 10−4, respectively. The median follow-up time was 53 months. Patients with MRD levels ≥0.01% at follow-up time-points during and after first induction, and at the end of treatment had significantly lower disease-free survival by comparison to patients with MRD values <0.01%. Seven of nine patient with recurrence in the BM showed under treatment persisting MRD levels ≥0.01% of BM cells. This was also observed in another two patients with infant leukemia who relapsed. In conclusion, the investigation of levels and the dynamics of MRD by sensitive and quantitative FC can provide a basis for further clinical studies for at least upgrading of therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Pui, CH, Boyett, JM, Rivera, GK, Hancock, ML, Sandlund, JT, Ribeiro, RC, Rubnitz, JE, Behm, FG, Raimondi, SC, Gajjar, A, Razzouk, B, Campana, D, Kun, LE, Relling, MV & Evans, WE Long-term results of total therapy studies 11, 12 and 13A for childhood acute lymphoblastic leukemia at St Jude Children's Research Hospital. Leukemia, (2000). 14, 2286–2294.

    Article  CAS  Google Scholar 

  2. Eden, OB, Harrison, G, Richards, S, Lilleyman, JS, Bailey, CC, Chessells, JM, Hann, IM, Hill, FG & Gibson, BE Long-term follow-up of the United Kingdom Medical Research Council protocols for childhood acute lymphoblastic leukaemia, 1980–1997. Medical Research Council Childhood Leukaemia Working Party. Leukemia, (2000). 14, 2307–2320.

    Article  CAS  Google Scholar 

  3. Gustafsson, G, Schmiegelow, K, Forestier, E, Clausen, N, Glomstein, A, Jonmundsson, G, Mellander, L, Makipernaa, A, Nygaard, R & Saarinen-Pihkala, UM Improving outcome through two decades in childhood ALL in the Nordic countries: the impact of high-dose methotrexate in the reduction of CNS irradiation. Nordic Society of Pediatric Haematology and Oncology (NOPHO). Leukemia, (2000). 14, 2267–2275.

    Article  CAS  Google Scholar 

  4. Vilmer, E, Suciu, S, Ferster, A, Bertrand, Y, Cave, H, Thyss, A, Benoit, Y, Dastugue, N, Fournier, M, Souillet, G, Manel, AM, Robert, A, Nelken, B, Millot, F, Lutz, P, Rialland, X, Mechinaud, F, Boutard, P, Behar, C, Chantraine, JM, Plouvier, E, Laureys, G, Brock, P, Uyttebroeck, A, Margueritte, G, Plantaz, D, Norton, L, Francotte, N, Gyselinck, J, Waterkeyn, C, Solbu, G, Philippe, N & Otten, J Long-term results of three randomized trials (58831, 58832, 58881) in childhood acute lymphoblastic leukemia: a CLCG-EORTC report. Children Leukemia Cooperative Group. Leukemia, (2000). 14, 2257–2266.

    Article  CAS  Google Scholar 

  5. Schrappe, M, Camitta, B, Pui, CH, Eden, T, Gaynon, P, Gustafsson, G, Janka-Schaub, GE, Kamps, W, Masera, G, Sallan, S, Tsuchida, M & Vilmer, E Long-term results of large prospective trials in childhood acute lymphoblastic leukemia. Leukemia, (2000). 14, 2193–2194.

    Article  CAS  Google Scholar 

  6. Mathe, G, Weiner, R, Pouillart, P, Schwarzenberg, L, Jasmin, C, Schneider, M, Hayat, M, Amiel, JL, de Vassal, F & Rosenfeld, C BCG in cancer immunotherapy: experimental and clinical trials of its use in treatment of leukemia minimal and or residual disease. Natl Cancer Inst Monogr, (1973). 39, 165–175.

    CAS  PubMed  Google Scholar 

  7. Gutterman, JU, Mavligit, G, Burgess, MA, McCredie, KB, Hunter, C, Freireich, EJ & Hersh, EM Immunodiagnosis of acute leukemia: detection of residual disease. J Natl Cancer Inst, (1974). 53, 389–392.

    Article  CAS  Google Scholar 

  8. Bradstock, KF, Janossy, G, Tidman, N, Papageorgiou, ES, Prentice, HG, Willoughby, M & Hoffbrand, AV Immunological monitoring of residual disease in treated thymic acute lymphoblastic leukaemia. Leuk Res, (1981). 5, 301–309.

    Article  CAS  Google Scholar 

  9. Campana, D & Pui, CH Detection of minimal residual disease in acute leukemia: methodologic advances and clinical significance. Blood, (1995). 85, 1416–1434.

    CAS  Google Scholar 

  10. San Miguel, JF, Ciudad, J, Vidriales, MB, Orfao, A, Lucio, P, Porwit-MacDonald, A, Gaipa, G, van Wering, E & van Dongen, JJ Immunophenotypical detection of minimal residual disease in acute leukemia. Crit Rev Oncol Hematol, (1999). 32, 175–185.

    Article  CAS  Google Scholar 

  11. Szczepanski, T, Orfao, A, van der Velden, VH, San Miguel, JF & van Dongen, JJ Minimal residual disease in leukaemia patients. Lancet Oncol, (2001). 2, 409–417.

    Article  CAS  Google Scholar 

  12. Pui, CH & Evans, WE Genetic abnormalities and drug resistance in acute lymphoblastic leukemia. Adv Exp Med Biol, (1999). 457, 383–389.

    Article  CAS  Google Scholar 

  13. Forestier, E, Johansson, B, Borgstrom, G, Kerndrup, G, Johansson, J & Heim, S Cytogenetic findings in a population-based series of 787 childhood acute lymphoblastic leukemias from the Nordic countries. The NOPHO Leukemia Cytogenetic Study Group. Eur J Haematol, (2000). 64, 194–200.

    Article  CAS  Google Scholar 

  14. Biondi, A, Valsecchi, MG, Seriu, T, d'Aniello, E, Willemse, MJ, Fasching, K, Pannunzio, A, Gadner, H, Schrappe, M, Kamps, WA, Bartram, CR, van Dongen, JJ & Panzer-Grumayer, ER Molecular detection of minimal residual disease is a strong predictive factor of relapse in childhood B-lineage acute lymphoblastic leukemia with medium risk features. A case control study of the International BFM study group. Leukemia, (2000). 14, 1939–1943.

    Article  CAS  Google Scholar 

  15. Cave, H, Guidal, C, Rohrlich, P, Delfau, MH, Broyart, A, Lescoeur, B, Rahimy, C, Fenneteau, O, Monplaisir, N & d'Auriol, L Prospective monitoring and quantitation of residual blasts in childhood acute lymphoblastic leukemia by polymerase chain reaction study of delta and gamma T-cell receptor genes. Blood, (1994). 83, 1892–1902.

    CAS  PubMed  Google Scholar 

  16. Verhagen, OJ, Willemse, MJ, Breunis, WB, Wijkhuijs, AJ, Jacobs, DC, Joosten, SA, van Wering, ER, van Dongen, JJ & van der Schoot, CE Application of germline IGH probes in real-time quantitative PCR for the detection of minimal residual disease in acute lymphoblastic leukemia. Leukemia, (2000). 14, 1426–1435.

    Article  CAS  Google Scholar 

  17. Dworzak, MN, Froschl, G, Printz, D, Mann, G, Potschger, U, Muhlegger, N, Fritsch, G & Gadner, H Prognostic significance and modalities of flow cytometric minimal residual disease detection in childhood acute lymphoblastic leukemia. Blood, (2002). 99, 1952–1958.

    Article  CAS  Google Scholar 

  18. Campana, D, Neale, GA, Coustan-Smith, E & Pui, CH Detection of minimal residual disease in acute lymphoblastic leukemia: the St Jude experience. Leukemia, (2001). 15, 278–279.

    Article  CAS  Google Scholar 

  19. Ciudad, J, San Miguel, JF, Lopez-Berges, MC, Vidriales, B, Valverde, B, Ocqueteau, M, Mateos, G, Caballero, MD, Hernandez, J, Moro, MJ, Mateos, MV & Orfao, A Prognostic value of immunophenotypic detection of minimal residual disease in acute lymphoblastic leukemia. J Clin Oncol, (1998). 16, 3774–3781.

    Article  CAS  Google Scholar 

  20. Philippe, J, Louagie, H, Thierens, H, Vral, A, Cornelissen, M & De Ridder, L Quantification of apoptosis in lymphocyte subsets and effect of apoptosis on apparent expression of membrane antigens. Cytometry, (1997). 29, 242–249.

    Article  CAS  Google Scholar 

  21. van Dongen, JJ, Seriu, T, Panzer-Grumayer, ER, Biondi, A, Pongers-Willemse, MJ, Corral, L, Stolz, F, Schrappe, M, Masera, G, Kamps, WA, Gadner, H, van Wering, ER, Ludwig, WD, Basso, G, de Bruijn, MA, Cazzaniga, G, Hettinger, K, van der Does-van den Berg, A, Hop, WC, Riehm, H & Bartram, CR Prognostic value of minimal residual disease in acute lymphoblastic leukaemia in childhood. Lancet, (1998). 352, 1731–1738.

    Article  CAS  Google Scholar 

  22. Cave, H, van der Werff ten Bosch,, Suciu, S, Guidal, C, Waterkeyn, C, Otten, J, Bakkus, M, Thielemans, K, Grandchamp, B & Vilmer, E Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia. European Organization for Research and Treatment of Cancer – Childhood Leukemia Cooperative Group. N Engl J Med, (1998). 339, 591–598.

    Article  CAS  Google Scholar 

  23. Coustan-Smith, E, Sancho, J, Hancock, ML, Boyett, JM, Behm, FG, Raimondi, SC, Sandlund, JT, Rivera, GK, Rubnitz, JE, Ribeiro, RC, Pui, CH & Campana, D Clinical importance of minimal residual disease in childhood acute lymphoblastic leukemia. Blood, (2000). 96, 2691–2696.

    CAS  Google Scholar 

  24. Nyvold, C, Madsen, HO, Ryder, LP, Seyfarth, J, Svejgaard, A, Clausen, N, Wesenberg, F, Jonsson, OG, Forestier, E & Schmiegelow, K Precise quantification of minimal residual disease at day 29 allows identification of children with acute lymphoblastic leukemia and an excellent outcome. Blood, (2002). 99, 1253–1258.

    Article  CAS  Google Scholar 

  25. Szczepanski, T, Flohr, T, van der Velden, VH, Bartram, CR & van Dongen, JJ Molecular monitoring of residual disease using antigen receptor genes in childhood acute lymphoblastic leukaemia. Best Pract Res Clin Haematol, (2002). 15, 37–57.

    Article  CAS  Google Scholar 

  26. Roberts, WM, Estrov, Z, Ouspenskaia, MV, Johnston, DA, McClain, KL & Zipf, TF Measurement of residual leukemia during remission in childhood acute lymphoblastic leukemia. N Engl J Med, (1997). 336s, 317–323.

    Article  Google Scholar 

  27. Farahat, N, Lens, D, Zomas, A, Morilla, R, Matutes, E & Catovsky, D Quantitative flow cytometry can distinguish between normal and leukaemic B-cell precursors. Br J Haematol, (1995). 91, 640–646.

    Article  CAS  Google Scholar 

  28. Dworzak, MN, Fritsch, G, Fleischer, C, Printz, D, Froschl, G, Buchinger, P, Mann, G & Gadner, H Comparative phenotype mapping of normal vs malignant pediatric B-lymphopoiesis unveils leukemia-associated aberrations. Exp Hematol, (1998). 26, 305–313.

    CAS  PubMed  Google Scholar 

  29. Ciudad, J, Orfao, A, Vidriales, B, Macedo, A, Martinez, A, Gonzalez, M, Lopez-Berges, MC, Valverde, B & San Miguel, JF Immunophenotypic analysis of CD19+ precursors in normal human adult bone marrow: implications for minimal residual disease detection. Haematologica, (1998). 83, 1069–1075.

    CAS  PubMed  Google Scholar 

  30. Lucio, P, Parreira, A, van den Beemd, MW, van Lochem, EG, van Wering, ER, Baars, E, Porwit-MacDonald, A, Bjorklund, E, Gaipa, G, Biondi, A, Orfao, A, Janossy, G, van Dongen, JJ & San Miguel, JF Flow cytometric analysis of normal B cell differentiation: a frame of reference for the detection of minimal residual disease in precursor-B-ALL. Leukemia, (1999). 13, 419–427.

    Article  CAS  Google Scholar 

  31. Weir, EG, Cowan, K, LeBeau, P & Borowitz, MJ A limited antibody panel can distinguish B-precursor acute lymphoblastic leukemia from normal B precursors with four color flow cytometry: implications for residual disease detection. Leukemia, (1999). 13, 558–567.

    Article  CAS  Google Scholar 

  32. Porwit-MacDonald, A, Bjorklund, E, Lucio, P, van Lochem, EG, Mazur, J, Parreira, A, van den Beemd, MW, van Wering, ER, Baars, E, Gaipa, G, Biondi, A, Ciudad, J, van Dongen, JJ, San Miguel, JF & Orfao, A BIOMED-1 concerted action report: flow cytometric characterization of CD7+ cell subsets in normal bone marrow as a basis for the diagnosis and follow-up of T cell acute lymphoblastic leukemia (T-ALL). Leukemia, (2000). 14, 816–825.

    Article  CAS  Google Scholar 

  33. McKenna, RW, Washington, LT, Aquino, DB, Picker, LJ & Kroft, SH Immunophenotypic analysis of hematogones (B-lymphocyte precursors) in 662 consecutive bone marrow specimens by 4-color flow cytometry. Blood, (2001). 15, 2498–2507.

    Article  Google Scholar 

  34. Campana, D Applications of cytometry to study acute leukemia: in vitro determination of drug sensitivity and detection of minimal residual disease. Cytometry, (1994). 18, 68–74.

    Article  CAS  Google Scholar 

  35. Coustan-Smith, E, Behm, FG, Sanchez, J, Boyett, JM, Hancock, ML, Raimondi, SC, Rubnitz, JE, Rivera, GK, Sandlund, JT, Pui, CH & Campana, D Immunological detection of minimal residual disease in children with acute lymphoblastic leukaemia. Lancet, (1998). 351, 550–554.

    Article  CAS  Google Scholar 

  36. Bennett, JM, Catovsky, D, Daniel, MT, Flandrin, G, Galton, DA, Gralnick, HR & Sultan, C Proposals for the classification of the acute leukaemias. French–American–British (FAB) co-operative group. Br J Haematol, (1976). 33, 451–458.

    Article  CAS  Google Scholar 

  37. Bene, MC, Castoldi, G, Knapp, W, Ludwig, WD, Matutes, E, Orfao, A & van't Veer, MB Proposals for the immunological classification of acute leukemias. European Group for the Immunological Characterization of Leukemias (EGIL). Leukemia, (1995). 9, 1783–1786.

    CAS  Google Scholar 

  38. Gustafsson, G, Kreuger, A, Clausen, N, Garwicz, S, Kristinsson, J, Lie, SO, Moe, PJ, Perkkio, M, Yssing, M & Saarinen-Pihkala, UM Intensified treatment of acute childhood lymphoblastic leukaemia has improved prognosis, especially in non-high-risk patients: the Nordic experience of 2648 patients diagnosed between 1981 and 1996. Nordic Society of Paediatric Haematology and Oncology (NOPHO). Acta Paediatr, (1998). 87, 1151–1161.

    Article  CAS  Google Scholar 

  39. Lucio, P, Gaipa, G, van Lochem, EG, van Wering, ER, Porwit-MacDonald, A, Faria, T, Bjorklund, E, Biondi, A, van den Beemd, MW, Baars, E, Vidriales, B, Parreira, A, van Dongen, JJ, San Miguel, JF & Orfao, A BIOMED-I concerted action report: flow cytometric immunophenotyping of precursor B-ALL with standardized triple-stainings. BIOMED-1 Concerted Action Investigation of Minimal Residual Disease in Acute Leukemia: International Standardization and Clinical Evaluation. Leukemia, (2001). 15, 1185–1192.

    Article  CAS  Google Scholar 

  40. Campana, D & Coustan-Smith, E Detection of minimal residual disease in acute leukemia by flow cytometry. Cytometry, (1999). 38, 139–152.

    Article  CAS  Google Scholar 

  41. Malec, M, Bjorklund, E, Soderhall, S, Mazur, J, Sjogren, AM, Pisa, P, Bjorkholm, M & Porwit-MacDonald, A Flow cytometry and allele-specific oligonucleotide PCR are equally effective in detection of minimal residual disease in ALL. Leukemia, (2001). 15, 716–727.

    Article  CAS  Google Scholar 

  42. Neale, GA, Coustan-Smith, E, Pan, Q, Chen, X, Gruhn, B, Stow, P, Behm, FG, Pui, CH & Campana, D Tandem application of flow cytometry and polymerase chain reaction for comprehensive detection of minimal residual disease in childhood acute lymphoblastic leukemia. Leukemia, (1999). 13, 1221–1226.

    Article  CAS  Google Scholar 

  43. van Wering, ER, Beishuizen, A, Roeffen, ET, van der Linden-Schrever, BE, Verhoeven, MA, Hahlen, K, Hooijkaas, H & van Dongen, JJ Immunophenotypic changes between diagnosis and relapse in childhood acute lymphoblastic leukemia. Leukemia, (1995). 9, 1523–1533.

    CAS  PubMed  Google Scholar 

  44. Macedo, A, San Miguel, JF, Vidriales, MB, Lopez-Berges, MC, Garcia-Marcos, MA, Gonzalez, M, Landolfi, C & Orfao, A Phenotypic changes in acute myeloid leukaemia: implications in the detection of minimal residual disease. J Clin Pathol, (1996). 49, 15–18.

    Article  CAS  Google Scholar 

  45. Ciudad, J, San Miguel, JF, Lopez-Berges, MC, Garcia, MM, Gonzalez, M, Vazquez, L, del Canizo, MC, Lopez, A, van Dongen, JJ & Orfao, A Detection of abnormalities in B-cell differentiation pattern is a useful tool to predict relapse in precursor-B-ALL. Br J Haematol, (1999). 104, 695–705.

    Article  CAS  Google Scholar 

  46. Pui, CH & Campana, D New definition of remission in childhood acute lymphoblastic leukemia. Leukemia, (2000). 14, 783–785.

    Article  CAS  Google Scholar 

  47. Foroni, L, Coyle, LA, Papaioannou, M, Yaxley, JC, Sinclair, MF, Chim, JS, Cannell, P, Secker-Walker, LM, Mehta, AB, Prentice, HG & Hoffbrand, AV Molecular detection of minimal residual disease in adult and childhood acute lymphoblastic leukaemia reveals differences in treatment response. Leukemia, (1997). 11, 1732–1741.

    Article  CAS  Google Scholar 

  48. de Haas, V, Verhagen, OJ, von dem, B, Kroes, W, van den Berg, H & van der Schoot, CE Quantification of minimal residual disease in children with oligoclonal B-precursor acute lymphoblastic leukemia indicates that the clones that grow out during relapse already have the slowest rate of reduction during induction therapy. Leukemia, (2001). 15, 134–140.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from Swedish Cancer Society (Cancerfonden), Swedish Childhood Cancer Society (Barncancerfonden) and Stockholm County Council. The excellent technical assistance of Ms Inger Bodin, Yrsa Bringensparr, Marianne Lagnefelt, Britt Lundh, Shala Tarahumi, and Margareta Waern is gratefully acknowledged. We thank Mr Lewis Edgel for the help with editing the manuscript and the graphics. We thank Caltag Laboratories (San Francisco, CA, USA) and Dakopatts (Glostrup, Denmark) for kind donation of monoclonal antibodies for this study and Becton Dickinson (Stockholm, Sweden) for computer support.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Björklund, E., Mazur, J., Söderhäll, S. et al. Flow cytometric follow-up of minimal residual disease in bone marrow gives prognostic information in children with acute lymphoblastic leukemia. Leukemia 17, 138–148 (2003). https://doi.org/10.1038/sj.leu.2402736

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402736

Keywords

This article is cited by

Search

Quick links