Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

CD34+ or CD34: which is the more primitive?

Abstract

Remarkable progress has been achieved in the characterization and isolation of primitive hematopoietic stem cells (HSC). HSC represent a very small subset of hematopoietic cells and provide self-renewal, possess differentiation capacity and allow a constant supply of the entire hematopoietic cell spectrum. Until recently, CD34 has been used as a convenient marker for HSC, since CD34+ cells have been shown to possess colony-forming potential in short-term assays, maintain long-term colony-forming potential in in vitro cultures and allow the expression and differentiation of blood cells from different hematopoietic lineages in in vivo models. Clinical and experimental protocols have targeted CD34+ cells enriched by a variety of selection models and have readily used these for transplantation, purging and gene therapies and targets for future organ replacement. Recent studies in murine and human models, however, have indicated that CD34 HSC exist as well, which possess engraftment potential and distinct HSC characteristics. These studies challenge the dogma that HSC are uniformly found in the CD34+ subset, and question whether primitive HSC are CD34+ or CD34. In this review, results on murine and human CD34+ and CD34 HSC, differences between them and their possible interactions are examined.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Civin CI, Strauss LC, Brovall C, Fackler MJ, Schwartz JF, Shaper JH . Antigenic analysis of hematopoiesis III. A hematopoietic progenitor cell surface antigen defined by a monoclonal antibody against KG-1a cells J Immunol 1985 133: 157–164

    Google Scholar 

  2. Andrews RE, Singer JW, Bernstein ID . Precursors of colony-forming cells in humans can be distinguished from colony-forming cells by expression of CD33 and CD34 antigen and light scatter J Exp Med 1989 169: 1721–1731

    Article  CAS  PubMed  Google Scholar 

  3. Krause DS, Fackler MJ, Civin CI, May WS . CD34: structure, biology, and clinical utility Blood 1996 87: 1–13

    Article  CAS  PubMed  Google Scholar 

  4. Sutherland HJ, Eaves CJ, Eaves AC, Dragowska W, Lansdorp PM . Characterization and partial purification of human marrow cells capable of initiating long-term hematopoiesis in vitro Blood 1989 74: 1563–1570

    Article  CAS  PubMed  Google Scholar 

  5. Bhatia M, Wang JC, Kapp U, Bonnet D, Dick JE . Purification of primitive human hematopoietic cells capable of repopulating immune-deficient mice Proc Natl Acad Sci USA 1997 94: 5320–5325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Orlic D, Bodine D . What defines a pluripotent hematopoietic stem cell (PHSC): will the real PHSC please stand up! Blood 1994 84: 3991–3994

    Article  CAS  PubMed  Google Scholar 

  7. Spangrude GJ, Heimfeld S, Weissman IL . Purification and characterization of mouse hematopoietic stem cells Science 1988 241: 58–62

    Article  CAS  PubMed  Google Scholar 

  8. Uchida N, Weissman IL . Searching for hematopoietic stem cells: evidence that Thy-1.1lo Lin Sca-1+ cells are the only stem cells in C57BL/Ka-Thy-1.1 bone marrow J Exp Med 1992 175: 175–184

    Article  CAS  PubMed  Google Scholar 

  9. Okada S, Nakachi H, Nagayoshi K, Nagayishi K, Nishikawa S, Miura Y, Suda T . In vivo and in vitro stem cell function of c-kit- and Sca-1-positive murine hematopoietic cells Blood 1992 80: 3044–3050

    Article  CAS  PubMed  Google Scholar 

  10. Ikuta K, Weissman IL . Evidence that hematopoietic stem cells express mouse c-kit but do not depend on steel factor for their generation Proc Natl Acad Sci USA 1992 89: 1502–1506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Szilvassy SJ, Lansdorp PM, Humphries RK, Eaves AC, Eaves CJ . Isolation in a single step of highly enriched murine hematopoietic stem cell population with competitive long-term repopulating ability Blood 1989 74: 930–939

    Article  CAS  PubMed  Google Scholar 

  12. Morel F, Szilvassy SJ, Travis M, Chen B, Galy A . Primitive hematopoietic cells in murine bone marrow express the CD34 antigen Blood 1996 88: 3774–3784

    Article  CAS  PubMed  Google Scholar 

  13. Krause DS, Ito T, Fackler MJ, Smith OM, Collector MI, Sharkis SJ, May WS . Characterization of murine CD34, a marker for hematopoietic progenitor and stem cells Blood 1994 84: 691–901

    Article  CAS  PubMed  Google Scholar 

  14. Gallacher L, Murdoch B, Wu DM, Karanu FN, Keeney M, Bhatia M . Isolation and characterization of human CD34(−)Lin(−) and CD34(+)Lin(−) hematopoietic stem cells using cell surface markers AC133 and CD7 Blood 2000 95: 2813–2820

    Article  CAS  PubMed  Google Scholar 

  15. Civin CI, Almeida-Porada G, Lee MJ, Olweus J, Terstappen LWMM . Sustained, retransplantable, multilineage engraftment of highly purified adult human bone marrow stem cells in vivo Blood 1996 88: 4102–4109

    Article  CAS  PubMed  Google Scholar 

  16. Link H, Arseniev L, BΩhre O, Kadar JG, Diedrich H, Poliwoda H . Transplantation of allogeneic CD34+ blood cells Blood 1996 87: 4903–4909

    Article  CAS  PubMed  Google Scholar 

  17. Urbano-Ispizua A, Rozman C, Martinaez C, Marin P, Briones J, Rovira M, Feliz P, Viguria MC, Merino A, Sierra J, Mazzara R, Caaeras E, Montserrat E . Rapid engraftment without significant graft-versus-host disease after allogeneic transplantation of CD34+ selected cells from peripheral blood Blood 1997 89: 3967–3973

    Article  CAS  PubMed  Google Scholar 

  18. Engelhardt M, Bertz H, Afting M, Waller CF, Finke J . High- versus standard-dose filgrastim (rhG-CSF) for mobilization of peripheral-blood progenitor cells from allogeneic donors and CD34+ immunoselection J Clin Oncol 1999 17: 2160–2172

    Article  CAS  PubMed  Google Scholar 

  19. Engelhardt M, Bertz H, WΩsch R, Finke J . Analysis of stem cell apheresis products using intermediate-dose filgrastim plus large volume apheresis for allogeneic transplantation Ann Hematol 2001 80: 201–208

    Article  CAS  PubMed  Google Scholar 

  20. Engelhardt M, Douville J, Behringer D, Jähne A, Smith A, Henschler R, Lange W . Hematopoietic recovery of ex vivo perfusion culture expanded bone marrow and unexpanded peripheral blood progenitors after myeloablative chemotherapy Bone Marrow Transplant 2001 27: 249–259

    Article  CAS  PubMed  Google Scholar 

  21. Baum CM, Weissman IL, Tsukamoto AS, Buckle AM, Peault B . Isolation of a candidate human hematopoietic stem-cell population Proc Natl Acad Sci USA 1992 89: 2804–2808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Berardi AC, Wang A, Levine JD, Lopez P, Scadden DT . Functional isolation and characterization of human hematopoietic stem cells Science 1995 267: 104–108

    Article  CAS  PubMed  Google Scholar 

  23. Petzer AL, Hogge DE, Lansdorp PM, Reid DS, Eaves CJ . Self-renewal of primitive human hematopoietic cells (long-term-culture-initiating cells) in vitro and their expansion in define medium Proc Natl Acad Sci USA 1996 93: 1470–1474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Civin CI, Trischmann T, Kadan NS, Davis J, Noga S, Cohen K, Duffy B, Gronewegen I, Wiley J, Law P, Hardwick A, Oldham F, Gee A . Highly purified CD34-positive cells reconstitute hematopoiesis J Clin Oncol 1996 14: 2224–2233

    Article  CAS  PubMed  Google Scholar 

  25. Larochelle A, Vormoor J, Hanenberg H, Wang JC, Bhatia M, Lapidot T, Murdoch B, Xiao XL, Kato I, Williams DA, Dick JE . Identification of primitive human hematopoietic cells capable of repopulating NOD/SCID mouse bone marrow: implication for gene therapy Nat Med 1996 2: 1329–1337

    Article  CAS  PubMed  Google Scholar 

  26. Ploemacher RE, Brons NHC . Separation of CFU-S from primitive cells responsible for reconstitution of the bone marrow hemopoietic stem cell compartment following irradiation: evidence for a pre-CFU-S cell Exp Hematol 1989 17: 263–266

    CAS  PubMed  Google Scholar 

  27. Testa NG, Molineux G . Haematopoiesis. A Practical Approach IRL Press at Oxford University Press: Oxford 1993

    Google Scholar 

  28. Ploemacher RE, Brons NHC . Cells with marrow and spleen repopulating ability, and cells forming spleen colonies on day 16, 12 and 8 are sequentially ordered on the basis of increasing Rhodamine 123 retention J Cell Physiol 1988 136: 531–536

    Article  CAS  PubMed  Google Scholar 

  29. Ploemacher RE, Van der Sluijs JP, Van Beurden CAJ, Baert MRM, Chan PL . Use of limiting dilution type long-term marrow cultures in frequency analysis of marrow-repopulating and spleen colony-forming hematopoietic stem cells in the mouse Blood 1991 78: 2527–2533

    Article  CAS  PubMed  Google Scholar 

  30. Breems DA, Blokland EAW, Neben S, Ploemacher RE . Frequency analysis of human primitive haematopoietic stem cell subsets using a cobblestone area forming cell assay Leukemia 1994 8: 1095–1104

    CAS  PubMed  Google Scholar 

  31. Sutherland HJ, Lansdorp PM, Henkelman DH, Eaves AC, Eaves CJ . Functional characterization of individual human hematopoietic stem cells cultured at limiting dilution on supportive marrow stromal layers Proc Natl Acad Sci USA 1990 87: 3584–3588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Srour EF, Zanjani ED, Cornetta K, Traycoff CM, Flake AW, Hendrick M, Brandt JE, Leemhuis T, Hoffman R . Persistence of human multilineage, self-renewing lymphohematopoietic stem cells in chimeric sheep Blood 1993 82: 3333–3339

    Article  CAS  PubMed  Google Scholar 

  33. Dick JE . Normal and leukemic human stem cells assayed in SCID mice Semin Immunol 1996 8: 197–206

    Article  CAS  PubMed  Google Scholar 

  34. Glimm H, Eisterer W, Lee K, Cashman J, Holyoake TL, Nicolini F, Shultz LD, von Kalle C, Eaves CJ . Previously undetected human hematopoietic cell populations with short-term repopulating activity selectively engraft NOD/SCI-β2 microglobulin-null mice J Clin Invest 2001 107: 199–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Holyoake TL, Nicolini FE, Eaves CJ . Functional differences between transplantable human hematopoietic stem cells from fetal liver, cord blood, and adult marrow Exp Hematol 1999 27: 1418–1427

    Article  CAS  PubMed  Google Scholar 

  36. Bhatia M, Bonnet D, Murdoch B, Gan OL, Dick JE . A newly discovered class of human hematopoietic cells with SCID-repopulating activity Nat Med 1998 4: 1038–1045

    Article  CAS  PubMed  Google Scholar 

  37. Nakamura Y, Ando K, Chargui J, Kawada H, Sato T, Tsuji T, Hotta T, Kato S . Ex vivo generation of CD34+ cells from CD34 hematopoietic cells Blood 1999 94: 4053–4059

    Article  CAS  PubMed  Google Scholar 

  38. Zanjani ED, Almeide-Porada G, Livingston AG, Flake AW, Ogawa M . Human bone marrow CD34 cells engraft in vivo and undergo multilineage expression that includes giving rise to CD34+ cells Exp Hematol 1998 26: 353–360

    CAS  PubMed  Google Scholar 

  39. Till JE, McCulloch EA . A direct measurement of the radiation sensitivity of normal mouse bone marrow cells Radiat Res 1961 14: 213–222

    Article  CAS  PubMed  Google Scholar 

  40. Berenson RJ, Andrews RG, Bensinger WI, Kalamasz DF, Knitter G, Buckner CD, Bernstein ID . Antigen CD34+ marrow cells engraft lethally irradiated baboons J Clin Invest 1988 81: 951–955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Donnelly DS, Zelterman D, Sharkis S, Krause DS . Functional activity of murine CD34+ and CD34 hematopoietic stem cell populations Exp Hematol 1999 27: 788–792

    Article  CAS  PubMed  Google Scholar 

  42. DiGiusto D, Chen S, Combbs J, Webb S, Namikawa R, Tsukamoto A, Chen BP, Galy AHM . Human fetal bone marrow early progenitor for T, B and myeloid cells are found exclusively in the population expression high levels of CD34 Blood 1994 84: 421–432

    Article  CAS  PubMed  Google Scholar 

  43. Cashman JD, Lapidot T, Wang JCY, Doedens M, Schultz, Lansdorp P, Dick JE, Eaves C . Kinetic evidence of the regeneration of multilineage hematopoiesis from primitive cells in normal human bone marrow transplanted into immunodeficient mice Blood 1997 89: 4307–4316

    Article  CAS  PubMed  Google Scholar 

  44. Hogan CJ, Shpall EJ, McNulty O, McNiece I, Dick JE, Schultz LD, Keller G . Engraftment and development of human CD34+-enriched cells from umbilical cord blood in NOD/LtSz-scid mice Blood 1997 90: 85–96

    Article  CAS  PubMed  Google Scholar 

  45. Kawashima I, Zanjani E, Almaida-Porado G, Flake A, Zeng H, Ogawa M . CD34+ human marrow cells that express low levels of Kit protein are enriched for long-term marrow-engrafting cells Blood 1996 87: 4136–4142

    Article  CAS  PubMed  Google Scholar 

  46. Srour E, Brandt J, Briddell R, Grigsby S, Leemhuis T, Hoffman R . Long-term generation and expression of human primitive hematopoietic progenitor cells in vitro Blood 1993 81: 661–669

    Article  CAS  PubMed  Google Scholar 

  47. Sutherland D, Yeo E, Stewart A, Nayar R, DiGiusto R, Zanjani E, Hoffman R, Murray L . Identification of CD34+ subsets after glycoprotease selection: engraftment of CD34+Thy-1+Lin stem cells in fetal sheep Exp Hematol 1996 24: 795–806

    CAS  PubMed  Google Scholar 

  48. Gao Z, Fackler MJ, Leung W, Lumkul R, Ramirez M, Theobald N, Malech HL, Civin CI . Human CD34+ cell preparations contain over 100-fold greater NOD/SCID mouse engrafting capacity than do CD34 cell preparations Exp Hematol 2001 29: 910–921

    Article  CAS  PubMed  Google Scholar 

  49. Goodell MA . CD34+ or CD34: does it really matter? Blood 1999 15: 2545–2547

    Article  Google Scholar 

  50. Ogawa M . Changing phenotypes of hematopoietic stem cells Exp Hematol 2002 30: 3–6

    Article  PubMed  Google Scholar 

  51. Dao MA, Nolta JA . CD34: to select or not to select? That is the question Leukemia 2000 14: 773–776 (review)

    Article  CAS  PubMed  Google Scholar 

  52. Andrews RG, Peterson LJ, Morris J, Potter J, Heyward S, Gough M, Bryant E, Kiem H . Differential engraftment of genetically modified CD34(+) and CD34(−) hematopoietic cell subsets in lethally irradiated baboons Exp Hematol 2000 28: 508–518

    Article  CAS  PubMed  Google Scholar 

  53. Goodell MA, Brose K, Paradis G, Conner AS, Mulligan R . Isolation and function properties of murine hematopoietic stem cells that are replicating in vivo J Exp Med 1996 183: 1797–1806

    Article  CAS  PubMed  Google Scholar 

  54. Goodell MA, Rosenzweig M, Kim H, Marks D, DeMaria MA, Paradis G, Grupp SA, Sieff CA, Mulligan R, Johnson RP . Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species Nat Med 1997 3: 1337–1345

    Article  CAS  PubMed  Google Scholar 

  55. Guo Y, Follo M, Kaiser S, Geiger K, Kapp U, Lübbert M, Engelhardt M . Isolation of hematopoietic stem cells with efflux capacity from mice and human bone marrow, muscle tissue and various other cell sources Blood 2001 98 (Suppl.): 116b–4114

    Google Scholar 

  56. Liu HJ, Verfaillie CM . Phenotypic and in vitro characterization of Hoechst 33342 side population in umbilical cord blood Blood 2000 96 (Suppl.): 664a

    Google Scholar 

  57. Storms RW, Goodell MA, Fisher A, Mulligan R, Smith C . Hoechst dye efflux reveals a novel CD7+CD34 lymphoid progenitor in human umbilical cord blood Blood 2000 96: 2125–2133

    Article  CAS  PubMed  Google Scholar 

  58. Pettengell R, Luft T, Henschler R, Hows JM, Dexter TM, Ryder D, Testa NK . Direct comparison by limiting dilution analysis of long-term culture-initiating cells in human bone marrow, umbilical cord blood, and blood stem cells Blood 1994 84: 3653–3659

    Article  CAS  PubMed  Google Scholar 

  59. Uchida N, Fujisaki T, Eaves A, Eaves C . Transplantable hematopoietic stem cells in human fetal liver have a CD34+ side population (SP) phenotype J Clin Invest 2001 108: 1071–1077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Osawa M, Hanada K, Hamada H, Nakachi H . Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cells Science 1996 273: 242–245

    Article  CAS  PubMed  Google Scholar 

  61. Morel F, Galy A, Chen B, Szilvassy SJ . Equal distribution of competitive long-term repopulating stem cells in the CD34+ and CD34 fractions of Thy-1lowSca-1+ bone marrow cells Exp Hematol 1998 26: 440–448

    CAS  PubMed  Google Scholar 

  62. Sato T, Laver JH, Ogawa M . Reversible expression of CD34 by murine hematopoietic stem cells Blood 1999 94: 2548–2554

    Article  CAS  PubMed  Google Scholar 

  63. Tajima F, Sato T, Laver JH, Ogawa M . CD34 expression by murine hematopoietic stem cells mobilized by granulocyte colony-stimulating factor Blood 2000 96: 1989–1993

    Article  CAS  PubMed  Google Scholar 

  64. Ando K, Nakamura Y, Chargui J, Matsuzawa H, Tsuji T, Kato S, Hotta T . Extensive generation of human cord blood CD34+ stem cells from LinCD34 cells in a long-term in vitro system Exp Hematol 2000 28: 690–699

    Article  CAS  PubMed  Google Scholar 

  65. Summers YJ, Heyworth CM, De Wynter EA, Chang J, Testa NG . Cord blood G0 CD34+ cells have a thousand-fold higher capacity for generating progenitors in vitro than G1 CD34+ cells Stem Cells 2001 19: 505–513

    Article  CAS  PubMed  Google Scholar 

  66. Tajima F, Deguchi T, Laver JH, Zeng H, Ogawa M . Reciprocal expression of CD38 and CD34 by adult murine hematopoietic stem cells Blood 2001 97: 2618–2624

    Article  CAS  PubMed  Google Scholar 

  67. Ito T, Tajimi F, Ogawa M . Developmental changes of CD34 expression by murine hematopoietic stem cells Exp Hematol 2000 28: 1269–1273

    Article  CAS  PubMed  Google Scholar 

  68. Dao MA, Nolta JA . Reversibility of CD34 expression on human stem cells that retain the capacity for secondary reconstitution Blood 2000 96 (Suppl): 581a

    Google Scholar 

  69. Glimm H, Oh I-H, Eaves CJ . Human hematopoietic stem cells stimulated to proliferate in vitro lose engraftment potential during their S/G2/M transit and do not re-enter G0 Blood 2000 96: 4185–4193

    Article  CAS  PubMed  Google Scholar 

  70. Verfaillie CM, Almaida-Porada G, Wissink S, Zanjani ED . Kinetics of engraftment of CD34 and CD34+ cells from mobilized blood differs from that of CD34 and CD34+ cells from bone marrow Exp Hematol 2000 28: 1071–1079

    Article  CAS  PubMed  Google Scholar 

  71. Morrison SJ, Weissman IL . The long-term repopulating subset of hematopoietic stem cells is deterministic and isolatable by phenotype Immunity 1994 1: 6611–6673

    Article  Google Scholar 

  72. Magli MC, Iscove NN, Odartchenko N . Transient nature of early hematopoietic spleen colonies Nature 1982 295: 527–529

    Article  CAS  PubMed  Google Scholar 

  73. Kondo M, Weissman IL, Akashi K . Identification of clonogenic common lymphoid progenitors in mouse bone marrow Cell 1997 91: 661–672

    Article  CAS  PubMed  Google Scholar 

  74. Akashi K, Traver D, Miyamoto T, Weissmann IL . A clonogenic common myeloid progenitor that gives rise to all myeloid lineages Nature 2000 404: 193–197

    Article  CAS  PubMed  Google Scholar 

  75. Eaves AC, Eaves CJ . Growth control in leukemia Prog Clin Biol Res 1990 354: 223–236

    Google Scholar 

  76. Jackson KA, Mi T, Goodell MA . Hematopoietic potential of stem cells isolated from murine skeletal muscle Proc Natl Acad Sci USA 1999 96: 14482–14486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Jackson KA, Majka SM, Wang H, Pocius J, Hartley CJ, Majesky MW, Entman ML, Michael LH, Hirschi KK, Goodell MA . Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells J Clin Invest 2001 107: 1395–1402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Goodell MA . Stem cells: is there a future in plastics? Curr Opin Cell Biol 2001 13: 662–665

    Article  CAS  PubMed  Google Scholar 

  79. Horwitz EM, Prockop DJ, Fitzpatrick LA, Koo WWK, Gordon PL, Neel M, Sussman M, Orchard P, Marx JC, Pyeritz RE, Brenner MK . Transplantibility and therapeutic effects of bone marrow derived mesenchymal cells in children with osteogenesis imperfecta Nat Med 1999 5: 309–313

    Article  CAS  PubMed  Google Scholar 

  80. Petersen BE, Bowen WC, Patrene KD, Mars WM, Sullivan AK, Murase N, Boggs SS, Greenberger JS, Goff JP . Bone marrow as a potential source of hepatic oval cells Science 1999 284: 1168–1170

    Article  CAS  PubMed  Google Scholar 

  81. Makino S, Fukuda K, Miyoshi S, Konishi F, Kodama H, Pan J, Sno M, Takahashi T, Hori S, Abe H, Hata J, Umezawa A, Ogawa S . Cardiomyocytes can be generated from bone marrow cells in vitro J Clin Invest 1999 103: 697–705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Mezey E, Chandross KJ, Harta G, Maki RA, McKercher SR . Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow Science 2000 290: 1779–1782

    Article  CAS  PubMed  Google Scholar 

  83. Brazelton TR, Rossi FM, Keshet GI, Blau HM . From marrow to brain: expression of neuronal phenotypes in adult mice Science 2000 290: 1775–1779

    Article  CAS  PubMed  Google Scholar 

  84. Bjornson CRR, Rietze RL, Reynolds BA, Magli MC, Vescovi AL . Turning brain into blood: a hematopoietic fate adopted by adult neuronal stem cells in vivo Science 1999 283: 534–537

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grant C6 from the Center for Clinical Research (ZKF), University of Freiburg. We thank Prof Dr Roland Mertelsmann for his continuous support and Drs Hanno Glimm and Florian Otto for critical review of the manuscript and valuable comments.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Engelhardt, M., Lübbert, M. & Guo, Y. CD34+ or CD34: which is the more primitive?. Leukemia 16, 1603–1608 (2002). https://doi.org/10.1038/sj.leu.2402620

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402620

Keywords

This article is cited by

Search

Quick links